Механические свойства жидкостей и газов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Механические свойства жидкостей и газов

Поиск

МЕХАНИКА ЖИДКОСТЕЙ И ГАЗОВ

 

ПЛАН

Механические свойства жидкостей и газов

1.1 Текучесть и сжимаемость

1.2 Вязкость

1.3 Давление

1.4 Механизм давления

 

Гидро-аэростатика

2.1 Закон Паскаля

2.2 Гидростатическое давление

2.2.1 Единицы давления

2.3 Гидростатический парадокс

2.4 Закон Архимеда

2.4.1 Вывод закона

2.4.2 Другой вывод (метод замены)

2.4.3 Важные уточнения (направление и точка приложения силы)

2.5 Плавание тел

2.6 Гидростатическое определение плотности

2.7 Тело в газе

2.8 Про атмосферное давление

2.9 Всегда ли верен закон Архимеда

2.10 Основные результаты

2.11 Порешаем задачи

 

Гидро-аэродинамика

3.1 Картина движения.

3.2 Уравнение неразрывности

3.3 Уравнение Бернулли.

3.4 Следствия из уравнения Бернулли.

Истечение жидкости из отверстия. Формула Торричелли.

3.5 Движение тел в жидкостях и газах.

Подъемная сила. Лобовое сопротивление. Силы сопротивления.

3.6 Главное про гидроаэродинамику

3.7 Порешаем задачи


МЕХАНИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ

Текучесть и сжимаемость

Текучесть - одно из особенных свойств жидкостей и газов, отличающее их от твердых тел. Судя по всему, атомы и молекулы, из которых они состоят, слабее связаны друг с другом, чем атомы в твердых телах. В результате жидкости и газы не имеют своей собственной формы. Их форма - это форма сосуда, в котором они находятся.

( Исключение - капли и тонкие жидкие пленки. О них мы собираемся поговорить в следующей - после Механики - части нашего курса.)

При этом газы всегда заполняют сосуд полностью - у них нет не только своей формы, но и своего объема. И уж тогда понятно, что газы легко сжимаемы. Все знают, что плотность воздуха на горной вершине заметно меньше плотности у поверхности Земли. Так атмосфера Земли сжимает сама себя!

А жидкости свой объем все-таки имеют. И его очень даже нелегко изменить. Обычно жидкости слабо реагируют на изменение внешнего давления - почти не меняют свою плотность. Например, плотность воды на дне Марианской впадины, на глубине более 11 км почти не отличается от плотности океанской воды на поверхности! Поэтому во многих случаях жидкость можно считать абсолютно несжимаемой. Так будем поступать и мы в дальнейшем.

То, что жидкости очень слабо сжимаемы, можно красиво продемонстрировать.

Возьмем пластиковую бутылку, наполовину наполненную водой. Выстрелим в нее из спортивного пистолета, целясь выше уровня воды...

Посмотрите:

РИС

пуля оставила входное и выходное отверстия, но сама бутылка не пострадала.

А теперь выстрелим чуть ниже уровня воды...

РИС

Бутылка разлетелась вдребезги! Почему?

Чтобы проникнуть в воду, пуля должна ее либо сжать на величину своего объема, либо вытеснить наверх. Для вытеснения ей не хватает времени - столкновение происходит очень быстро, а вода обладает инерцией. Поэтому происходит попытка сжатия - в жидкости развиваются большие давления - стенки бутылки разрываются.

(Если вместо бутылки взять бумажную коробку с водой, то можно обойтись и детским пистолетом, стреляющим пульками.)

 

1.2 Вязкость

Жидкости и газы обладают еще одним свойством, которое называется вязкостью (или внутренним трением). Вы, наверно, и так, без всякой физики, скажите, у кого больше вязкость: у сгущенки или у воды? Конечно, у сгущенки! А вязкость воды и воздуха – у кого больше?.. Конечно, у воды!

Вязкость связана с трением. Но это не трение, например, воды о стенки трубы, по которой она течет. Там трение внешнее.

А вязкость - это трение одного слоя воды о другой, внутреннее трение. Дело в том, что в любом сечении потока жидкости, в разных местах потока жидкость имеет разную скорость. В центре трубы и у ее края скорости совсем не одинаковы.

РИС

У самой стенки, на поверхности твердого тела слой жидкости имеет нулевую скорость (не почти нулевую, а в точности нулевую - это проверено во многих экспериментах!). Естественно, что этот слой отстает от ближайшего соседнего. Тот, чуть более близкий к центру, уже будет иметь некоторую скорость. Каждый слой будет действовать на соседние, опережая одного соседа и отставая от другого. А где-то в центре будет слой (или струя) - лидер. В результате установится некоторое распределение скоростей для разных "струй" по сечению потока.

Все это хорошо известно любому, кто купался в реке, особенно в большой равнинной реке...

Теперь понятно, куда нужно направлять лодку или плот, если вы спешите?

(Это все справедливо для правильно текущей реки, на участке без поворотов, сильных мелей и порогов!)

------------------------

Задача: А знаете ли вы,

почему пыль так любит оседать на поверхности автомобиля? По той же самой причине!

РИС

Скажем, чемодан, если его не прикрепить, или шляпу с крыши машины обязательно сметет потоком набегающего воздуха. А пылинки - они маленькие, сидят себе тихо в приграничном с крышей слое воздуха и не высовываются - а там скорость ровно такая же, как у самой машины.

--------------------------

Так вот, наличие вязкости сильно осложняет изучение законов поведения жидкости и газов. Поэтому, в первом приближении изучают жидкости без трения. Хотя знаменитый математик и физик, "отец" всех компьютеров на свете Джон фон Нейман говорил, что пользоваться такой моделью жидкости - все равно, что изучать сухую воду.

Что ж, значит, будем изучать сухую воду...

Но сначала стоит ввести физическую величину, которая будет исключительно полезна при изучении поведения жидкостей. Это...

1.3 Давление. Нормальные и касательные силы

Заметим, что взаимодействие между твердыми телами могут происходить в отдельных точках (шариковая ручка на бумаге, волчок, кубик, поставленный на вершину), а взаимодействия между слоями жидкости, а также между жидкостью и твердым телом, происходят всегда по некоторой поверхности.

Поэтому для описания этого взаимодействия имеет смысл ввести понятие давления - отношение модуля силы, действующей перпендикулярно поверхности, к площади этой поверхности:

pºFn/S,

т.е. давление - это просто модуль нормальной силы, действующей на единичную площадку.

В принципе в жидкости или газе могут существовать как нормальные силы - направленные перпендикулярно выбранной площадке,

РИС

так и касательные.

Причем, по своему происхождению нормальные силы - это обычно силы упругости, которые препятствуют изменению объема жидкости или газа.

А касательные силы (они возникают только при движении жидкости) - это и есть силы внутреннего трения - одного слоя жидкости о другой.

Жидкость, в которой мы пренебрегаем наличием внутреннего трения (вязкости), называется идеальной.

Конечно, идеальных жидкостей не существует, но, например, любая жидкость, находящаяся в равновесии, удовлетворяет требованию идеальности: в ней существуют только силы нормального давления (силы упругости).

То же верно и для любой движущейся жидкости, в которой скорость изменения деформаций не слишком велика.

Касательных упругих сил в жидкости (и в газе) не бывает!

Жидкость покорно приходит в движение, если малейшие внешние силы пытаются ее сдвинуть, и совершенно этому не сопротивляется.

Отсутствие касательных упругих сил - главное отличие жидкости от твердого тела.

 

1.4 Механизм давления

В газах, жидкостях и твердых телах он совершенно разный.

В газах давление на стенку создается в результате ударов молекул - они передают ей импульс, импульс стенки меняется, и мы говорим, что на стенку действует сила Dр/Dt и оказывается давление F/S.

В жидкостях и твердых телах атомы и молекулы не мечутся так беспорядочно, как в газах. Они колеблются вокруг своих положений равновесия. Всякая попытка покинуть эту позицию пресекается соседями. Если попытаться сблизить такие молекулы (сжать жидкость или твердое тело), то они начинают сильно отталкивать друг друга, как будто к ним приделаны очень жесткие пружины.

Поэтому, например, давление неподвижной жидкости на дно сосуда (гидростатическое давление) вызвано не тем, что сила ударов придонных молекул больше, чем молекул приповерхностных. Это давление возникает из-за того, что увеличиваются силы отталкивания молекул-соседей - ведь им приходится выдерживать вес всех молекул, находящихся над ними.

ГИДРО-АЭРОСТАТИКА

Как всякая статика, она рассматривает свойства жидкостей и газов, находящихся в покое, равновесии. Все содержание гидро-аэростатики - это два закона, являющихся по сути дела теоремами.

Закон Паскаля

Как мы уже говорили, жидкости, в отличие от твердых тел, не сопротивляются изменению их формы. Иначе говоря, в состоянии равновесия в них нет касательных упругих сил. А есть только нормальные упругие силы.

РИС

Из этого следует вот что:

 
 
В состоянии равновесия давление в жидкости не зависит от ориентации площадки, на которую оно действует. (закон Паскаля)

 


Логически это понятно. Мы можем менять ориентацию площадки, но одна и та же (по величине) сила будет все равно перпендикулярна к ней. Поэтому и давление на площадку (отношение силы к площади) будет тем же самым.

И это нетрудно доказать.

Мысленно выделим в нашей неподвижной жидкости ее очень малую часть в виде прямой призмы.

РИС

Две грани этой призмы параллельны друг другу, две другие ориентированы "параллельно" осям X иY, а еще одна грань ориентирована произвольно. Условие равновесия этой водяной призмы можно записать в виде равенства нулю всех действующих на нее сил:

pScosa=pySy

pSsina=pxSx

(Силы давления на параллельные грани, конечно, равны друг другу, но они сейчас нас не интересуют. А силу тяжести можно не учитывать, ввиду бесконечной малости призмы. Вы можете возразить: но и силы давления на грани призмы тоже будут уменьшаться. Верно, но нои будут уменьшаться пропорционально квадрату размера призмы, а сила тяжести - пропорционально кубу!)

Далее, т.к.

Scosa=Sy, а Ssina=Sx,

то

p=py=px,

что и требовалось доказать.

Следствием этой теоремы является важный факт:

давление, оказываемое внешними силами, передается жидкостью одинаково по всем направлениям.

(Иногда последнее утверждение тоже называют законом Паскаля.)

Пример:

РИС

Если сжимать жидкость поршнем, то такое же давление будет действовать со стороны жидкости на все стенки сосуда. При этом сила давления, оказываемого на жидкость и передаваемого ею, всегда перпендикулярна поверхности стенки: внешние касательные силы не вызывают у жидкости сил сопротивления, которые могли бы уравновесить жидкость. Поэтому в условиях равновесия силы давления всегда нормальны к поверхности жидкости и к любой площадке внутри жидкости.

На законе Паскаля (в англоязычных книгах по физике - принцип Паскаля: Pascal's Principle) основано действие гидравлического пресса.

РИС

Надавливая малой силой F1 на большой поршень площади S1, мы передаем давление р = F1 S1 на малый поршень. В результате он будет действовать с силой

F2 = р/ S2 = F1 S1 / S2 = F1 (S1 / S2).

В итоге мы можем получить выигрыш в силе во столько раз, во сколько отличаются площади поршней:

F2 = (S1 / S2) F1

На том же принципе основаны многие другие устройства: гидроусилители руля в автомобиле, гидроприводы тормозов и т.д.

Гидростатическое давление

Если внешнее давление на жидкость (например, давление воздуха, земной атмосферы) одинаково в любой точке жидкости (по Паскалю), то давление внутри жидкости, вызванное силой тяжести самой жидкости (гидростатическое давление), зависит от глубины погружения.

РИС

В самом деле, мысленно выделим в сосуде с водой площадку S на глубине h от поверхности. Гидростатическое давление на эту площадку оказывает вышележащий столб жидкости:

ргидро=F/S=mg/S=rVg/S=rShg/S=rgh.

Здесь m - масса столба жидкости, V - его объем, r - плотность жидкости.

Итак, на глубине h внутри сосуда с жидкостью давление будет равно сумме внешнего (атмосферного) и гидростатического давлений:

 

  р=ратм + rgh  


Оценим величину давления на глубине, скажем, 10м. Это, во-первых, атмосферное давление (примерно 105 Н/м2=105Па - паскалей - понятно, почему так назвали). А во - вторых, это гидростатическое давление 103кг/м3 х10м/с2х10м=105Па - ровно столько же! Это правило хорошо известно всем подводникам: каждые 10 метров погружения увеличивают давление на 1 атмосферу (нормальное атмосферное давление). Или: столб воды высотой 10 м давит так же, как вся земная атмосфера.

---------------------------

В: Попробуйте оценить вес всей земной атмосферы.

О: P=pатм4pR2з=105x12x(6,4)21012 @ 4x1019H

----------------------------

Единицы давления

Итак, в системе SI за единицу давления принят 1Н/м2, называемый 1 Паскаль (в честь Блеза Паскаля):

1Н/м2 º1 Па.

Кроме того, в технике (и в старой физике) принято использовать атмосферы:

1 атм @ 105Па.

Давление в 1 атмосферу называется нормальным атмосферным давлением.

Метеорологи выбрали свои единицы измерения давления (атмосферного) - миллиметры ртутного столба (это связано с устройством барометра того времени, когда они выбирались).

Следует запомнить:

760 мм рт.ст. = 1 атм = 105 Па

Гидростатический парадокс

Тот факт, что давление в жидкости зависит только от глубины, приводит к удивительной ситуации.

               
   
     
 
 


РИС

 

 

 
 


Каким образом большой вес воды в левом сосуде уравновешивается малым весом жидкости справа? Разгадка, конечно, в том, что часть веса левой жидкости уравновешивается реакцией стенок сосуда.

РИС

ЗАКОН АРХИМЕДА

РИС ( портрет )

Известно, что первым словом, которое произнес Архимед, когда "выскочил голым из ванной", было "Эврика!" - "Нашел!". Вот что он нашел:

на тело, погруженное в жидкость, действует выталкивающая сила, равная весу жидкости, вытесненной телом!

 

 


РИС

Этот закон так же знаменит, как "Танец маленьких лебедей", картина "Утро в сосновом лесу" или кинофильм "Белое солнце пустыни": "Если тело втерто в воду, не потонет оно сроду". (В широких народных кругах еще более известно одно его следствие: "После сытного обеда по закону Архимеда полагается поспать!" Правда, до сих пор все попытки доказать это следствие были исключительно экспериментальными и приводили к большому разбросу результатов.)

Наша очередная задача - вывести закон Архимеда чисто теоретически, из той механики, которая нам уже известна.

 

Вывод закона Архимеда

Теперь приступим. Пусть в воде находится неподвижный брусок - параллелепипед.

РИС

(Понятно, что тело любой формы можно представить в виде набора таких достаточно малых брусков.)

Итак, давление на верхнюю грань будет таким: рверх = ратм + rghверх, а сила, действующая на верхнюю грань бруска: Fверх = рверх S. Соответственно для нижней грани получим: рниж = ратм + rghниж и Fниж = рнижS. Обратите внимание, что столб жидкости непосредственно "не нависает" над нижней гранью. Но по закону Паскаля это не спасает нижнюю грань от давления всей жидкости, которая находится выше.

Результирующая сила, действующая на брусок, это разность нижней (которая больше) и верхней сил давления:

 

Fарх = Fниж - Fверх = рниж S - рверх S = (рниж - рверх)S = (ратм + rghниж - ратм - rghверх)S = (rghниж - rghверх) S =rg (hниж - hверх) S = rgН S = rgV.

 

Итак, получается, что возникает выталкивающая сила, направленная вверх, противоположно силе тяжести, и равная Fарх =rж gVпогр. Здесь Vпогр - объем погруженной части тела (ведь бывает, что тело погружено в жидкость не полностью); rж - это плотность жидкости (а не тела!).

Можно заметить, что rж Vпогр - это масса жидкости в объеме погруженной части тела, т.е. именно масса вытесненной телом жидкости. А тогда архимедова сила Fарх = mж gравна силе тяжести вытесненной телом жидкости или, что то же самое (для неподвижной жидкости), - весу жидкости, вытесненной телом. Это и есть сформулированный нами закон Архимеда:

 
 
Fарх =-rж Vпогрg

 

 


Знак минус учитывает направление силы: противоположно направлению внешней гравитации.

Видно, что своим происхождением сила Архимеда обязана гравитации - в отсутствие силы тяжести никакой разницы в давлении сверху и снизу наш брусок не заметил бы.

На всякий случай: на наш брусок в воде, кроме рассмотренных нами сил, действуют еще и некоторые другие, просто они нас сейчас не интересовали. Какие это силы? Разумеется, есть силы давления жидкости слева и справа.

РИС

Но они компенсируют друг друга, дают суммарный нулевой эффект.

Есть еще и сила тяжести, действующая со стороны Земли на брусок. Она направлена вниз, к Земле и равна F = М g = rтела Vвсего тела g, где М - масса всего тела и объем V - тоже всего тела (а не его погруженной части!).

2.4.2 Другой вывод закона (метод мысленной замены)

Вместо погруженной части тела представим себе объем жидкости точно такой же формы.

РИС

На это неподвижное "жидкостное" тело действуют две силы - сила Архимеда (точно такая же, как действовала на реальное тело) и собственная сила тяжести выделенного объема жидкости. Поэтому искомая сила Архимеда равна по величине силе тяжести, действующей на жидкость в вытесненном объеме:

Fарх=rж Vпогрg.

Вот и все.

----------------------------------------------

Важные уточнения

Мы сказали, что сила Архимеда направлена противоположно силе тяжести, действующей на наше тело. Это так, если только наш сосуд с жидкостью и погруженным телом не имеет ускорения относительно источника гравитации (Земли). Если же ускорение (в любом направлении - горизонтальное или вертикальное) есть, то выталкивающая сила будет направлена не "вверх", а перпендикулярно поверхности жидкости:

РИС

Поэтому утверждение, что выталкивающая сила Архимеда направлена перпендикулярно поверхности жидкости, является более общим, чем формулировка "направлена противоположно силе тяжести."

Или можно сказать иначе: сила Архимеда направлена противоположно весу тела.

О точке приложения силы Архимеда. (Ведь нельзя же считать плавающее тело материальной точкой - у него не было бы объема, а следовательно, и никакой архимедовой силы просто не возникло бы!) Если наше тело однородное (одинаковой плотности) и жидкость тоже однородная, то нет вопросов: сила Архимеда приложена в геометрическом центре погруженной части тела. Если же однородности нет, то все сложнее, и приходится пользоваться терминами, знакомство с которыми у нас еще впереди: в общем случае архимедова сила приложена там, где был бы центр масс вытесненного объема жидкости:

РИС

Плавание тел

Понятно, что ситуация с телом в жидкости (будет ли оно плавать или утонет) зависит от соотношения этих двух сил: Архимеда и силы тяжести.

Каким образом тяжеленный стальной лайнер плывет, а не тонет? Физически для этого необходимо, чтобы Fарх была равна силе тяжести. Иначе говоря, rж Vпогр = rтелаVтела. Видно, что вся "игра" идет на том, что фактически средняя плотность лайнера много меньше плотности воды (не все, что находится в объеме корабля, сделано из стали - кое-что из воздуха!)

.

Тело в газе

Все те же эффекты (давление на стенки сосуда, закон Паскаля, выталкивание тела по закону Архимеда) наблюдаются не только в жидкостях, но и в газах. Просто плотность газов много меньше плотности жидкостей, поэтому выталкивающая сила Fарх = rгаза gVпогр очень мала, а потому слабо заметна. Но она существует. Это можно продемонстрировать на опыте:

РИС

Уравновесим на коромысле весов полый шар А с помощью грузика В. Поместим всю систему под колпак насоса и откачаем воздух из-под колпака. Смотрите - шар опускается! Это значит, что его масса больше, чем масса грузика. А за счет чего они были в равновесии в воздухе? За счет силы Архимеда. Ведь она тем больше, чем больше объем погруженного тела.

А как летают на воздушных шарах? (Их придумали братья Монгольфье двести лет назад.)

РИС

Их наполняли горячим воздухом, который имеет меньшую плотность, чем атмосферный. Сегодня используют газ гелий, который удобнее в обращении и дает лучший подъемный эффект.

Про атмосферное давление

Газовые оболочки окружают все звезды и все большие планеты. Малые небесные тела лишены атмосфер.

---------------------------

В: Почему? (Вспомните про вторую космическую скорость.)

---------------------------

На каждого из нас давит воздушный столб высотой примерно 1000км. У поверхности Земли давление составляет примерно 105 Па, но обычно оно почти не ощущается - воздух действует на нас со всех сторон. Правда, организм ощущает изменение атмосферного давления - под него вынуждено подстраиваться наше внутреннее давление.

Существование атмосферного давления было продемонстрировано в знаменитом опыте с магдебургскими полушариями:

РИС

8 лошадей с каждой стороны не могли разъединить полушария после того, как между ними откачали воздух.

Как и в случае с жидкостью, давление воздуха меняется с высотой. Если бы плотност ь воздуха не менялась с высотой или тогда, когда этим изменением можно пренебречь (небольшие высоты), давление воздуха можно рассчитывать по формуле

p(h)=p0 - rgh,

где r - плотность воздуха у поверхности земли (примерно 1,2 кг/м3).

Реально все газы обладают сжимаемостью, поэтому их плотность падает с уменьшением давления, т.е. с увеличением высоты. Поэтому давление с высотой падает медленнее, чем по линейному закону.

Подведем ИТОГИ

 

2.10.1 Закон Архимеда:

 
 
На тело, погруженное в жидкость или газ, действует выталкивающая сила, по величине равная весу жидкости (газа), вытесненной телом.

 


  Fарх = -rж/г Vпогрg      
Иначе говоря:

 

 

(если тело не имеет ускорения в жидкости)

2.10.2 Закон Паскаля:

 
 
Давление, оказываемое внешними силами, передается жидкостью или газом одинаково по всем направлениям.  

 


2.10.3

О. Давлением р на некоторую площадку называется отношение модуля силы, действующей перпендикулярно площадке, к ее площади S:.

p=Fn/S
РИС

 

Если внешнее давление на жидкость (например, земной атмосферы) одинаково в любой точке жидкости, то

2.10.4

давление внутри жидкости, вызванное силой тяжести самой жидкости (гидростатическое давление ), прямо пропорционально глубине погружения:

ргидро=rgh    

 

2.10.5

Связь единиц давления:

Порешаем задачи (#6/90, 40)

1. Кусок льда плавает в стакане с водой. Что будет с уровнем воды, если лед растает?

2. В цилиндрический сосуд радиуса R налита вода. На сколько изменится уровень воды, если в сосуд поместить деревянный брусок массы m?

3. С какой силой давит вода на стенку аквариума длиной А и высотой Н?

4. В воде плавает брусок в вертикальном положении. Как изменится уровень воды, если брусок будет плавать горизонтально?

5. Почему, плывя на спине, легче держаться на воде?

6. Почему доска плавает в воде своей широкой гранью?

7. В полый куб налита доверху жидкость. Как отличаются друг от друга силы давления на разные грани куба?

8. На рычаге уравновешены стальные шары. Нарушится ли равновесие, если шары погрузить в воду?

9. Металлический стержень уравновешен на опоре, которая находится посередине. Сохранится ли равновесие, если одну половину стержня согнуть пополам?

10. Что будет с уровнем воды в бассейне, если из плавающей в нем лодки взять камень и бросить в воду?

--------------------------------------

Интересно, что

эту задачу как-то предложили Гамову, Оппенгеймеру и Блоху. Все три знаменитых физика ответили неверно.

---------------------------------------

11. Что будет с уровнем воды в бассейне, если в плавающую в нем лодку зачерпнуть немного воды?

12. В воде плавает пробирка, внутри которой лежит кусочек пластилина. Пластилин вынимают и прилепляют к низу пробирки снаружи. Изменится ли при этом глубина погружения пробирки?

13. В сосуде плавает кусок льда, в который вмерз свинцовый шарик. Как изменится уровень воды, если лед растает?

14. Деревянный кубик лежит на дне сухого сосуда. Всплывет ли кубик, если в сосуд налить воду?

15. Потонет ли бутылка, заполненная водой, если ее опустить в воду?

16. Что тяжелее: тонна дерева или тонна железа?

17. Надутый воздухом шарик взвесили, потом надули сильнее и вновь взвесили. Одинаковы ли будут показания весов?

18. Почему подушка мягкая, а доска твердая?

19. Стакан с водой уравновешен на весах. Что будет, если в воду стакана опустить палец?

20. Постройте график объема всплывающего в воде пузырька от глубины его погружения.

21. По графику зависимости силы Архимеда от высоты тела над дном сосуда объясните, как двигалось тело.

22. Почему вода в проруби не поднимается до верхней кромки льда?

23. Какой длины нужна веревка, чтобы зачерпнуть воду из проруби ведром?

24. Толщина льда в центре озера 10м. Какой длины нужна веревка, чтобы котелком зачерпнуть воды из проруби?

27. Стойка с шариком, висящим на нити, укреплена на плавающем плоту. Нить удлинили и свинцовый шарик из положения в воздухе перешел в положение в воде. Как изменился уровень воды?

28. В каком случае выталкивающая сила, действующая на плавающий брусок, больше: когда он плавает в керосине или в воде?

29. Может ли тело в одной жидкости тонуть, а в другой плавать?

30. В воду опущен медный кубик и медная пластина той же массы. Будет ли одинаковой выталкивающая сила?

31. Какую форму нужно придать сосуду определенного объема, чтобы давление на его дно было наибольшим?

32. Как меняется объем пузырька воздуха, который поднимается со дна водоема?

33. В море на большой глубине затонула бутылка. Увеличится или уменьшится вместимость бутылки под давлением воды?

34. Пробковый поплавок массой m, привязанный нитью к камню, находится на глубине h под водой. Какое количество теплоты выделится после перерезания нити?

Отв. Q= mgh(ρв пр -1)

35. (№12/72, 53) Длинная вертикальная труба с поршнем опущена одним концом в сосуд с водой. Вначале поршень находится у поверхности воды, затем его медленно поднимают. Как зависит сила, приложенная к поршню, от высоты его подъема?

РИС

36. В воде на некоторой глубине плавает полый шар. Вернется ли он на прежнюю глубину, если его погрузить ниже и отпустить? Учтите сжимаемость шара и воды.

Решение. Ответ зависит от сжимаемости шара. Плотность воды, хотя и очень медленно, но растет с глубиной. Если шар более сжимаем, чем вода (что мало вероятно), то при увеличении глубины погружения действующая на него архимедова сила уменьшится, и в результате шар потонет. Если же шар более сжимаем, чем вода, то он вернется на прежнюю глубину.

Вывод: полностью погруженное тело, плавающее на некоторой глубине, будет устойчиво, только в том случае, когда оно менее сжимаемо, чем окружающая его жидкость. Так объясняется устойчивое плавание дирижабля или шара-зонда на определенной высоте.

Гидростатика

4.2.7

4.2.4

4.2.22 (теплота при всплывании пузырька)

4.2.26

КОЗ 3.18 (с.70)

Кг100мех № 86, 96, 99

ГИДРОАЭРОДИНАМИКА

ПЛАН

3.1 Картина движения.

3.2 Уравнение неразрывности

3.3 Уравнение Бернулли.

3.4 Следствия из уравнения Бернулли.

3.4.1 Истечение жидкости из отверстия. Формула Торричелли.

3.5 Движение тел в жидкостях и газах.

3.5.1 Подъемная сила.

3.5.2 Эффект Магнуса

3.5.3 Лобовое сопротивление. Силы сопротивления.

3.6 Основные результаты

3.7 Порешаем задачи

 

Это часть механики изучает движение жидкостей и газов. И движение твердых тел в этих средах.

РИС Фото

Вот течет вода. Неужели и ее - такую живую и непредсказуемую - можно вычислить, подобно материальным точкам и абсолютно твердым телам? Увы...

Конечно, это будет не совсем та, настоящая вода, которую мы с удовольствием наблюдаем или пользуемся. Но ведь и реальный шарик не является абсолютно твердым и гладким. Правда, движение жидкости - гораздо более сложное явление, чем столкновение шаров. Тем более! Здесь нам особенно потребуются упрощающие предположения, чтобы можно было хоть что-то сосчитать.

Изучая природу, мы не способны в точности понять замысел ее творца, в лучшем случае мы улавливаем общие идеи, а потому обречены на упрощения, на пользование моделями вместо реальных тел и веществ.

 

3.1 Картина движения

Итак, наш дальнейший объект изучения - идеальная несжимаемая жидкость.

Как описать движение жидкости, если вы не Айвазовский, а, скажем, Бернулли (по имени Даниил)?

Для начала можно поставить такой эксперимент:

взять прозрачную трубку, через которую течет вода, и капнуть в ее начале, в нескольких местах, по капле чернил.

РИС

Чернильные струйки покажут нам "линии тока" жидкости. Смотрите: когда жидкость только начинает течь через трубку, картина линий тока все время меняется, линии могут пересекаться, закручиваться, вообще вести себя некрасиво. Это нестационарный режим течения. Но постепенно все упорядочивается, и картина линий тока становится неизменной. Это значит, что с этого момента в каждой точке "трубочного пространства" скорость любой проходящей через нее частицы воды - одна и та же. В разных точках в трубке эта скорость может быть разной, и по величине, и по направлению. Но в данной точке пространства - она одна и та же. Такое движение жидкости называется стационарным (установившимся). При стационарном течении линии тока совпадают с траекториями отдельных частиц жидкости.

Встречается ли где-нибудь в реальности такое простое течение жидкости?

РИС

Да, такое приближение хорошо работает для медленных потоков или в длинных трубках, пока не интересуются тем, что происходит у стенок. То же самое справедливо для газа при медленном течении газа у поверхностей.

В дальнейшем, говоря о трубке, в которой течет жидкость, мы будем иметь в виду не столько реальную трубу, сколько пучок линий тока - стационарных, непересекающихся и непрерывных (иногда говорят - "трубка тока").

 

3.2 Уравнение неразрывности

Возьмем трубку с жидкостью переменного сечения. Пусть наша трубка достаточно узкая - настолько, что скорость жидкости во всех точках данного сечения можно считать одной и той же и перпендикулярной сечению:

РИС

За промежуток времени Dt через поперечное сечение площади S протечет масса жидкости

Dm=rDV=rDlS=rvDtS

Здесь r - плотность жидкости в данном сечении, DV - объем протекшей жидкости, v - скорость жидкости в данном сечении.

Но если течение стационарно, то за одно и то же время через любое (нормальное) сечение трубы должна протечь одна и та же масса воды - независимо от величины сечения. Поэтому для двух произвольных сечений S1 и S2 можно написать:

r1v1DtS1=r2v2DtS2

А если жидкость несжимаема, то r1 =r2 , и наше равенство принимает вид:

v1S1=v2S2

или vS=const.

Это и есть уравнение неразрывности.

Полученный результат верен для стационарно текущей несжимаемой жидкости, причем, для любых сечений, связанных одними и теми же линиями тока.

РИС

Итак,

скорость течения жидкости тем больше, чем уже поперечное сечение трубки;

она обратно пропорциональна площади поперечного сечения.

Многочисленные оговорки про условия, когда можно пользоваться этим уравнением, наводят на мысль, что такое бывает лишь в музее Физики, по воскресеньям, после выигрыша "Зенита" у "Манчестер Юнайтед". Эксперименты, однако, показывают, что уравнение неразрывности применимо не только к реальным жидкостям, но даже к газам, движущимся со скоростью много меньшей скорости звука в этой среде (для воздуха - примерно 330 м/с).

-------------------------------------

3.3 Уравнение Бернулли

а. Из уравнения неразрывности

v1S1=v2S2 ,

простите за каламбур, вытекает



Поделиться:


Познавательные статьи:




Последнее изменение этой страницы: 2016-04-19; просмотров: 1146; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 52.14.125.137 (0.017 с.)