Состав и физические свойства нефти и воды 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Состав и физические свойства нефти и воды



 

Нефтегазоносный пласт определяется не только породами, содержащими нефть или газ, но и самими насыщающими их фазами. Нефть и газ по химическому составу являются очень сложными углеводородами, находящимися при повышенных пластовом давлении и температуре. При извлечении углеводородов на поверхность давление и температура пластовой смеси уменьшаются. Состояние смеси углеводородов на поверхности зависит от состава углеводородов, добываемых из скважины, и от давления и температуры, при которых они извлекаются. Углеводороды, остающиеся в пласте на любой стадии его истощения, претерпевают физические изменения, так как пластовое давление по мере отбора из пласта нефти или газа уменьшается. Отсюда возникает необходимость изучения физических свойств углеводородов, находящихся в природных условиях, и особенно изменений этих свойств в зависимости от давления и температуры. Знание физических закономерностей дает возможность оценить количество полученных газа и жидкости, приведенных к стандартным условиям, при добыче на поверхность единицы объема пластовой жидкости. Из-за сложности природных углеводородных смесей очень часто приходится пользоваться эмпирическими данными, полученными в результате лабораторных исследований.

Химический состав углеводородных газов может быть легко определен до гептанов. Химический состав сырой нефти оценить труднее, так как она состоит в основном из более тяжелых углеводородов, чем гептаны.

Помимо свойств углеводородов, представляют интерес также свойства воды, каким-либо образом связанной с продуктивным пластом, так как вода занимает часть пространства пласта, создает энергию для добычи нефти, а также может добываться вместе с нефтью и газом.

Содержимое продуктивных пластов в основном находится в состоянии газа, пара или жидкости. Однако эти термины передают сущность состояния только при определенных давлениях и температурах. Вещество в зависимости от давления и температуры, при которых оно находится, может существовать в газообразном или жидком состоянии. Понятие пар определяется как газообразное состояние любого вещества, которое при обычных условиях является жидкостью или твердым телом. Под обычными условиями понимаются атмосферные условия давления и температуры. При рассмотрении углеводородов удобно понятия «газ» и «пар» считать синонимами.

Углеводородные системы, как и другие системы, могут быть гомогенными или гетерогенными. В гомогенной системе все ее части имеют одинаковые физические и химические свойства. Для гетерогейной системы физические и химические свойства в разных точках различны.

Гетерогенные системы состоят из фаз. «фаза» — это «определенная часть системы, которая является гомогенной и физически отделена от других фаз отчетливыми границами». Например, в гетерогенной системе одновременно содержатся лед, вода и водяной пар. Степень дисперсности не определяет количества фаз. В приведенном примере лед независимо от того, существует он в виде одного куска или раздроблен на несколько частей, является одной фазой.

 

СЖИМАЕМОСТЬ НЕФТИ. ОБЪЕМНЫЙ КОЭФФИЦИЕНТ

Нефть, как и все жидкости, обладает упругостью, т.е. способностью изменять объем под действием внешнего давления. Упругость жидкостей измеряется коэффициентом сжимаемости (или объемной упругости), определяемым из соотношения

. 27

где DV изменение объема нефти; V исходный объем нефти; - изменение давления.

Для жидкости следует использовать термин "сжимаемость", а для газов - " сверхсжимаемость".

Из формулы (27) следует, что коэффициент сжимаемости характеризует относительное изменение единицы объема нефти при изменении давления на единицу.

Коэффициент сжимаемости зависит от состава пластовой нефти, температуры и абсолютного давления. Нефти, не содержащие растворенного газа, обладают сравнительно низким коэффициентом сжимаемости, порядка (0,4— 0,7) ГПа-1, а легкие нефти со значительным количеством растворенного газа - повышенным коэффициентом сжимаемости (bн достигает 14,0 ГПа-1). Чем выше температура, тем больше коэффициент сжимаемости (рис. 16). Высокие коэффициенты сжимаемости свойственны нефтям, находящимся в пласте в условиях, близких к критическим, в частности, нефтям, окаймляющим газоконденсатные залежи.

Из графика (рис. 16) следует, что с уменьшением пластового давления вплоть давления насыщения коэффициент сжимаемости продолжает увеличиваться.

С количеством растворенного газа в нефти связан также объемный коэффициент b, характеризующий соотношение объемов нефти в пластовых условиях и после отделения газа на поверхности:

, 28

где Vпл - объем нефти в пластовых условиях; Vдег - объем этой же нефти атмосферном давлении и температуре 20°С после дегазации.

Объем нефти в пластовых условиях превышает объем сепарированной нефти в связи с повышенной пластовой температурой и содержанием большого колиичества растворенного газа в пластовой нефти. Однако высокое пластовое давление по себе обусловливает уменьшение объемного коэффициента, но так как сжимаемость жидкостей весьма мала, это давление мало влияет на значение объемного коэффициента нефти (рис.17). При снижении первоначального пластового давления р0 до давления насыщения рн объемный коэффициент нефти незначительно увеличивается в связи с расширением жидкости (рис.17, крю аб). В точке б начала выделения газа значение b достигает максимума, и дальнейшее падение давления приводит к выделению газа из нефти и уменьшению объемного kоэффициента.

Используя объемный коэффициент, можно определить усадку нефти, т.е. уменьшение объема пластовой нефти при извлечении ее на поверхность (в %). Усадка нефти

. 29

 

Иногда усадку U относят к объему нефти на поверхности. Тогда

Усадка некоторых нефтей достигает 45-50%.

 

ПЛОТНОСТЬ ПЛАСТОВОЙ НЕФТИ

 

В связи с изменением в пластовых условиях объема нефти под действием растворимого газа и температуры плотность ее в пласте обычно ниже плотности сепарированной нефти. Известны нефти, плотность которых в пласте меньше 500 кг/м3 при плотности сепарированной нефти 800 кг/м3.

Не все газы, растворяясь в нефти, одинаково влияют на ее плотность. С по-вышением давления плотность нефти значительно уменьшается при насыщении её углеводородными газами (метаном, пропаном, этиленом). Плотность нефтей, насыщенных азотом или углекислым газом, несколько возрастает с ростом давления.

Рост давления выше давления насыщения нефти газом также способствует некоторому увеличению ее плотности (рис. 18, правая ветвь кривой).

 

ВЯЗКОСТЬ ПЛАСТОВОЙ НЕФТИ

 

Вязкость пластовой нефти всегда значительно отличается от вязкости сепарированной вследствие большого количества растворенного газа, повышенных пластовой температуры и давления. При этом все нефти подчиняются следующим общим закономерностям: вязкость их уменьшается с повышением количества газа в растворе, с увеличением температуры (рис.19); повышение давления вызывает некоторое увеличение вязкости.

Увеличение вязкости нефти с ростом давления заметно лишь при давлениях выше давления насыщения. До этого увеличение вязкости с ростом давления значительно перекрывается понижением ее вследствие влияния растворяющегося газа (рис. 20). Вязкость нефти зависит также от состава и природы растворенного газа. При растворении азота вязкость увеличивается, а при растворении углеводородных газов она понижается тем больше, чем выше их молекулярная масса. Практически вязкость нефти в пластовых условиях различных месторождений изменяется от многих сотен МПа•с до десятых долей мПа•с.

В пластовых условиях вязкость нефти может быть в десятки раз меньше вязкости сепарированной нефти. Следует учитывать, что с понижением давления вязкость пластовой нефти непрерывно изменяется (рис. 19). При отсутствии азота перелом на кривых зависимости вязкости от давления наступает в области, близкой к давлению насыщения. Если в нефти содержатся значительные количества азота, перелом кривой может не соответствовать давлению насыщения в связи с уменьшением вязкости нефти при выделении азота.

 

ОСНОВНЫЕ ПОНЯТИЯ ФАЗОВОГО СОСТОЯНИЯ

СХЕМЫ ФАЗОВЫХ ПРЕВРАЩЕНИЙ

В процессе разработки месторождений в пластах непрерывно изменяется давление, количественное соотношение газа и нефти. Это сопровождается непрерывными изменениями состава газовой и жидкой фаз со взаимным их переходом.

Особенно интенсивные процессы таких превращений происходят при движении нефти по стволу скважины. Из-за быстрого падения давления из нефти выделяется значительное количество газа, и около устья поток превращается иногда в тонкодисперсную взвесь капель нефти в газовой среде.

Дальнейшее движение нефти к потребителю также сопровождается непрерывными фазовыми превращениями, например, из нефти, уже не содержащей газ, стараются извлечь и уловить наиболее летучие жидкие фракции для уменьшения потерь нефтепродуктов от испарения при хранении их в резервуарах.

Фазовые диаграммы

Естественные углеводородные системы состоят из большого числа компонентов, причем это не только углеводороды парафинового ряда, но и углеводороды, относящиеся к другим группам. Фазовое состояние смеси углеводородов зависит от ее состава, а также от свойств индивидуальных компонентов.

Типичная фазовая диаграмма многокомпонентной смеси (рис.21) в координатах давление - температура имеет петлеобразный вид, т.е. отличается от соответствующей фазовой диаграммы чистого вещества, изображающейся в виде одной монотонно – возрастающей, вогнутой к оси температур кривой с одной конечной (критической) точкой. Прежде чем перейти к обсуждению особенностей этой диаграммы, дадим определение некоторых важных физических понятий, связанных с этой диаграммой.

«Критическая точка» (точка К на рис. 21) соответствует значениям давления и температуры, при которых свойства каждой фазы становятся идентичными.

«Критическая температура» температура, соответствующая критической точке.

«Критическое давление» давление, соответствующее критической точке.

«Интенсивные свойства» — это такие свойства, которые не зависят от количества рассматриваемого вещества.

«Экстенсивные свойства» — свойства, прямо пропорциональные количеству рассматриваемого вещества.

«Кривая А точек начала кипения» — кривая, проходящая через точки, соответствующие, давлениям и температурам, при которых при переходе вещества из жидкого состояния в область двухфазного состояния образуется первый пузырек газа.

«Кривая точек росы b» — кривая, проходящая через точки, соответствующие давлению и температуре, при которых при переходе вещества из парообразного состояния в область двухфазного состояния образуется первая капелька жидкости.

«Двухфазная область» — область, ограниченная кривыми точек начала кипения и точек росы, внутри которой газ и жидкость находятся в состоянии равновесия.

«Крикондентерм» (М) наивысшая температура, при которой жидкость и пар могут сосуществовать в равновесии.

«Криконденбар» (N) наибольшее давление, при котором жидкость и пар могут сосуществовать в равновесии.

«Ретроградная область» (закрашенная площадь на рис. 21) — любая область, в пределах которой конденсация или парообразование происходят в направлении, обратном обычным фазовым изменениям.

«Ретроградная конденсация» (ограничена кривой KDM) означает, что жидкость конденсируется или при снижении давления при постоянной температуре (линия ABD), или при увеличении температуры при постоянном давлении (линияF GA

«Ретроградное испарение» (ограничена кривой NHK) означает, что образование пара происходит при уменьшении температуры при постоянном давлении (линия AGF) или при увеличении давления при постоянной температуре (линия DBA).

«Линия постоянного объема» (качественные линии) — линии, проходящие через точки одинакового объемного содержания жидкости внутри двухфазной области.

Из рассмотрения рис. 21 могут быть сделаны некоторые важные наблюдения. Кривая точек начала кипения и кривая точек росы сходятся в критической точке. Кривая точек начала кипения соответствует 100% содержания жидкости в системе, а кривая точек росы —100% содержания газа. Заштрихованные площади соответствуют области ретроградных явлений. Площадь, ограниченная кривыми, проходящими через точки K BMD, соответствует области изотермической ретроградной конденсации.

Фазовая диаграмма (рис. 21.) со всеми её особенностями присуща любым многокомпонентным смесям, но ширина её петли и расположение критической точки, а следовательно, и ретроградных областей зависят от состава смеси.

С нефтепромысловой точки зрения многокомпонентные системы грубо делятся на нефти и газы. Кроме того, многокомпонентные системы подразделяются в зависимости от состояния, в котором углеводородная смесь находится в пласте и после извлечения ее на поверхность.

Фазовое состояние пластовой углеводородной смеси и особенности их фазового поведения при разработке месторождений определяются пластовыми давлениями и температурами, а также составом смеси.

Если пластовое значение температуры смеси Тпл больше крикондентермы М (точка F) и в процессе разработке месторождения давление падает (линия FT4), то эта смесь будет всё время находится в однофазном газообразном состоянии. Такие смеси образуют газовые месторождения.

Если пластовая температура находится между критической и крикондентермой, то такие смеси относят к газоконденсатным. В этом случае в зависимости от соотношения между начальным пластовым и давлением начала конденсации (точка В) возможно существование трёх типов газоконденсатных залежей: пластовое давление может быть выше (однофазное ненасыщенное), равно (однофазное насыщенное) или ниже (двухфазное) давления начала конденсации.

Если пластовая температура ниже критической температуры смеси, т.е. находится левее критической точки, то такие смеси характерны для нефтяных месторождений. В зависимости от начальных значений пластовых температуры и давления (расположения точки, соответствующей этим значениям, относительно кривой точек кипения) различают нефтяные месторождения с недонасыщенными, насыщенными нефтями и месторождения с газовой шапкой.

Когда пластовая температура выше крикондентермы, то нефть содержит большое количество газообразных и легкокипящих углеводородов и обладает большей усадкой. Такие нефти называют лёгкими. Они отличаются высоким газонефтяным соотношением и плотностью, приближающейся к плотности газового конденсата.

Нефти. Смеси углеводородов,, которые в пластовых условиях.находятся в жидком состоянии называются нефтями. По величине усадки на поверхности.нефти могут быть с низкой и с высокой..усадкой.

Фазовая диаграмма для нефти с низкой усадкой приведена на рис. 22. Из этой диаграммы следуют две характерные особенности. Критическая точка расположена, справа от криконденбары, а линии равного объёмного содержания жидкости в смеси тесно расположены вблизи кривой точек росы. Кроме того, при атмосферном давлении и пластовой температуре смесь находится в области двухфазного состояния. При условиях ceпарации из смеси получается значительное количество жидкости, даже если ее объемное содержание в смеси очень низкое. Это явление обусловлено значительным расширением газовой фазы при низких давлениях. Характерной особенностью этой фазовой диаграммы является наличие в смеси сравнительно большого количества тяжелых компонентов.

'В зависимости от начальных пластовых условий, нефти подразделяются на насыщенные и недонасыщенные. Если начальные пластовые условия соответствуют точке А на кривой точек начала кипения (рис. 22), то, следовательно, нефть полностью насыщена газом.

Как видно из диаграммы, при снижении давления на бесконечно малую величину из насыщенной нефти выделяется газ. Есле начальные условия соответствуюг точке А/, расположенной выше кривой точек начала кипения, то нефть недонасыщена газом. Для того чтобы из этой недонасыщенной нефти начал выделяться газ, давление должно быть снижено на значительную величину (до точки А).

Нефть, имеющая большую усадку, содержит больше легких угле-водородов, чем нефть с малой усадкой. Критическая температура для таких нефтей ближе к пластовой температуре, а линии одинакового объемного содержания жидкости в смеси менее тесно сгруппированы вблизи кривой точек росы.

Типичная фазовая диаграмма для нефти с большой усадкой представлена на рис. 23. В этом случае как в пласте, так и на поверхности в.результате снижения давления получаются эначительно меньшие количества жидкости. Эта нефть может быть как насыщена (точка А), так и недонасыщена (точка А') газом.

'Различные классы углеводородов, помимо фазовых диаграмм, могут быть охарактеризованы составом, удельным весом добываемой жидкости и газовым фактором.

Нефти с небольшими усадками имеют газовые факторы ~ 180 м33, а удельный вес 0,80 г/см3 и более. Нефти с высокой усадкой имеют газовый фактор от 180 до 1400 м33, удельный вес 0,74—0,80 г/см3.. Классификация большинства пластовых систем может быть проведена лишь после подробного исследования проб пластовых смесей.

 

ПОДЗЕМНАЯ НЕФТЕГИДРОДИНАМИКА (ПГД)

Теоретической основой ПГД является теория фильтрации - наука, описывающая данное движение флюида с позиций механики сплошной среды, т.е. гипотезы сплошности (неразрывности) течения.



Поделиться:


Последнее изменение этой страницы: 2016-07-11; просмотров: 767; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.143.4.181 (0.045 с.)