ЗНАЕТЕ ЛИ ВЫ?

МЕХАНИЧЕСКИЕ СВОЙСТВА ЖИДКОСТЕЙ И ГАЗОВ



Текучесть и сжимаемость

Текучесть - одно из особенных свойств жидкостей и газов, отличающее их от твердых тел. Судя по всему, атомы и молекулы, из которых они состоят, слабее связаны друг с другом, чем атомы в твердых телах. В результате жидкости и газы не имеют своей собственной формы. Их форма - это форма сосуда, в котором они находятся.

(Исключение - капли и тонкие жидкие пленки.О них мы собираемся поговорить в следующей - после Механики - части нашего курса.)

При этом газы всегда заполняют сосуд полностью - у них нет не только своей формы, но и своего объема. И уж тогда понятно, что газы легко сжимаемы. Все знают, что плотность воздуха на горной вершине заметно меньше плотности у поверхности Земли. Так атмосфера Земли сжимает сама себя!

А жидкости свой объем все-таки имеют. И его очень даже нелегко изменить. Обычно жидкости слабо реагируют на изменение внешнего давления - почти не меняют свою плотность. Например, плотность воды на дне Марианской впадины, на глубине более 11 км почти не отличается от плотности океанской воды на поверхности! Поэтому во многих случаях жидкость можно считать абсолютно несжимаемой. Так будем поступать и мы в дальнейшем.

То, что жидкости очень слабо сжимаемы, можно красиво продемонстрировать.

Возьмем пластиковую бутылку, наполовину наполненную водой. Выстрелим в нее из спортивного пистолета, целясь выше уровня воды...

Посмотрите:

РИС

пуля оставила входное и выходное отверстия, но сама бутылка не пострадала.

А теперь выстрелим чуть ниже уровня воды...

РИС

Бутылка разлетелась вдребезги! Почему?

Чтобы проникнуть в воду, пуля должна ее либо сжать на величину своего объема, либо вытеснить наверх. Для вытеснения ей не хватает времени - столкновение происходит очень быстро, а вода обладает инерцией. Поэтому происходит попытка сжатия - в жидкости развиваются большие давления - стенки бутылки разрываются.

(Если вместо бутылки взять бумажную коробку с водой, то можно обойтись и детским пистолетом, стреляющим пульками.)

 

1.2 Вязкость

Жидкости и газы обладают еще одним свойством, которое называется вязкостью (или внутренним трением). Вы, наверно, и так, без всякой физики, скажите, у кого больше вязкость: у сгущенки или у воды? Конечно, у сгущенки! А вязкость воды и воздуха – у кого больше?.. Конечно, у воды!

Вязкость связана с трением. Но это не трение, например, воды о стенки трубы, по которой она течет. Там трение внешнее.

А вязкость - это трение одного слоя воды о другой,внутреннее трение. Дело в том, что в любом сечении потока жидкости, в разных местах потока жидкость имеет разную скорость. В центре трубы и у ее края скорости совсем не одинаковы.

РИС

У самой стенки, на поверхности твердого тела слой жидкости имеет нулевую скорость (не почти нулевую, а в точности нулевую - это проверено во многих экспериментах!). Естественно, что этот слой отстает от ближайшего соседнего. Тот, чуть более близкий к центру, уже будет иметь некоторую скорость. Каждый слой будет действовать на соседние, опережая одного соседа и отставая от другого. А где-то в центре будет слой (или струя) - лидер. В результате установится некоторое распределение скоростей для разных "струй" по сечению потока.

Все это хорошо известно любому, кто купался в реке, особенно в большой равнинной реке...

Теперь понятно, куда нужно направлять лодку или плот, если вы спешите?

(Это все справедливо для правильно текущей реки, на участке без поворотов, сильных мелей и порогов!)

------------------------

Задача: А знаете ли вы,

почему пыль так любит оседать на поверхности автомобиля? По той же самой причине!

РИС

Скажем, чемодан, если его не прикрепить, или шляпу с крыши машины обязательно сметет потоком набегающего воздуха. А пылинки - они маленькие, сидят себе тихо в приграничном с крышей слое воздуха и не высовываются - а там скорость ровно такая же, как у самой машины.

--------------------------

Так вот, наличие вязкости сильно осложняет изучение законов поведения жидкости и газов. Поэтому, в первом приближении изучают жидкости без трения. Хотя знаменитый математик и физик, "отец" всех компьютеров на свете Джон фон Нейман говорил, что пользоваться такой моделью жидкости - все равно, что изучать сухую воду.

Что ж, значит, будем изучать сухую воду...

Но сначала стоит ввести физическую величину, которая будет исключительно полезна при изучении поведения жидкостей. Это...

1.3 Давление. Нормальные и касательные силы

Заметим, что взаимодействие между твердыми телами могут происходить в отдельных точках (шариковая ручка на бумаге, волчок, кубик, поставленный на вершину), а взаимодействия между слоями жидкости, а также между жидкостью и твердым телом, происходят всегда по некоторой поверхности.

Поэтому для описания этого взаимодействия имеет смысл ввести понятие давления - отношение модуля силы, действующей перпендикулярно поверхности, к площади этой поверхности:

pºFn/S,

т.е. давление - это просто модуль нормальной силы, действующей на единичную площадку.

В принципе в жидкости или газе могут существовать как нормальные силы - направленные перпендикулярно выбранной площадке,

РИС

так и касательные.

Причем, по своему происхождению нормальные силы - это обычно силы упругости, которые препятствуют изменению объема жидкости или газа.

А касательные силы (они возникают только при движении жидкости) - это и есть силы внутреннего трения - одного слоя жидкости о другой.

Жидкость, в которой мы пренебрегаем наличием внутреннего трения (вязкости), называется идеальной.

Конечно, идеальных жидкостей не существует, но, например, любая жидкость, находящаяся в равновесии, удовлетворяет требованию идеальности: в ней существуют только силы нормального давления (силы упругости).

То же верно и для любой движущейся жидкости, в которой скорость изменения деформаций не слишком велика.

Касательных упругих сил в жидкости (и в газе) не бывает!

Жидкость покорно приходит в движение, если малейшие внешние силы пытаются ее сдвинуть, и совершенно этому не сопротивляется.

Отсутствие касательных упругих сил - главное отличие жидкости от твердого тела.

 

1.4 Механизм давления

В газах, жидкостях и твердых телах он совершенно разный.

В газах давление на стенку создается в результате ударов молекул - они передают ей импульс, импульс стенки меняется, и мы говорим, что на стенку действует сила Dр/Dt и оказывается давление F/S.

В жидкостях и твердых телах атомы и молекулы не мечутся так беспорядочно, как в газах. Они колеблются вокруг своих положений равновесия. Всякая попытка покинуть эту позицию пресекается соседями. Если попытаться сблизить такие молекулы (сжать жидкость или твердое тело), то они начинают сильно отталкивать друг друга, как будто к ним приделаны очень жесткие пружины.

Поэтому, например, давление неподвижной жидкости на дно сосуда (гидростатическое давление) вызвано не тем, что сила ударов придонных молекул больше, чем молекул приповерхностных. Это давление возникает из-за того, что увеличиваются силы отталкивания молекул-соседей - ведь им приходится выдерживать вес всех молекул, находящихся над ними.

ГИДРО-АЭРОСТАТИКА

Как всякая статика, она рассматривает свойства жидкостей и газов, находящихся в покое, равновесии. Все содержание гидро-аэростатики - это два закона, являющихся по сути дела теоремами.

Закон Паскаля

Как мы уже говорили, жидкости, в отличие от твердых тел, не сопротивляются изменению их формы. Иначе говоря, в состоянии равновесия в них нет касательных упругих сил. А есть только нормальные упругие силы.

РИС

Из этого следует вот что:

 
 
В состоянии равновесия давление в жидкости не зависит от ориентации площадки, на которую оно действует. (закон Паскаля)

 


Логически это понятно. Мы можем менять ориентацию площадки, но одна и та же (по величине) сила будет все равно перпендикулярна к ней. Поэтому и давление на площадку (отношение силы к площади) будет тем же самым.

И это нетрудно доказать.

Мысленно выделим в нашей неподвижной жидкости ее очень малую часть в виде прямой призмы.

РИС

Две грани этой призмы параллельны друг другу, две другие ориентированы "параллельно" осям X иY, а еще одна грань ориентирована произвольно. Условие равновесия этой водяной призмы можно записать в виде равенства нулю всех действующих на нее сил :

pScosa=pySy

pSsina=pxSx

(Силы давления на параллельные грани, конечно, равны друг другу, но они сейчас нас не интересуют. А силу тяжести можно не учитывать, ввиду бесконечной малости призмы. Вы можете возразить: но и силы давления на грани призмы тоже будут уменьшаться. Верно, но нои будут уменьшаться пропорционально квадрату размера призмы, а сила тяжести - пропорционально кубу!)

Далее, т.к.

Scosa=Sy, а Ssina=Sx,

то

p=py=px ,

что и требовалось доказать.

Следствием этой теоремы является важный факт:

давление, оказываемое внешними силами, передается жидкостью одинаково по всем направлениям.

(Иногда последнее утверждение тоже называют законом Паскаля.)

Пример:

РИС

Если сжимать жидкость поршнем, то такое же давление будет действовать со стороны жидкости на все стенки сосуда. При этом сила давления, оказываемого на жидкость и передаваемого ею, всегда перпендикулярна поверхности стенки: внешние касательные силы не вызывают у жидкости сил сопротивления, которые могли бы уравновесить жидкость. Поэтому в условиях равновесия силы давления всегда нормальны к поверхности жидкости и к любой площадке внутри жидкости.

На законе Паскаля (в англоязычных книгах по физике - принцип Паскаля: Pascal's Principle) основано действие гидравлического пресса.

РИС

Надавливая малой силой F1 на большой поршень площади S1, мы передаем давление р = F1 S1 на малый поршень. В результате он будет действовать с силой

F2 = р/ S2 = F1 S1 / S2 = F1 (S1 / S2).

В итоге мы можем получить выигрыш в силе во столько раз, во сколько отличаются площади поршней:

F2 = (S1 / S2) F1

На том же принципе основаны многие другие устройства: гидроусилители руля в автомобиле, гидроприводы тормозов и т.д.

Гидростатическое давление

Если внешнее давление на жидкость (например, давление воздуха, земной атмосферы) одинаково в любой точке жидкости (по Паскалю), то давление внутри жидкости, вызванное силой тяжести самой жидкости (гидростатическое давление), зависит от глубины погружения.

РИС

В самом деле, мысленно выделим в сосуде с водой площадку S на глубине h от поверхности. Гидростатическое давление на эту площадку оказывает вышележащий столб жидкости:

ргидро=F/S=mg/S=rVg/S=rShg/S=rgh.

Здесь m - масса столба жидкости, V - его объем, r - плотность жидкости.

Итак, на глубине h внутри сосуда с жидкостью давление будет равно сумме внешнего (атмосферного) и гидростатического давлений:

 

  р=ратм + rgh  


Оценим величину давления на глубине, скажем, 10м. Это, во-первых, атмосферное давление (примерно 105 Н/м2=105Па - паскалей - понятно, почему так назвали). А во - вторых, это гидростатическое давление 103кг/м3 х10м/с2х10м=105Па - ровно столько же! Это правило хорошо известно всем подводникам: каждые 10 метров погружения увеличивают давление на 1 атмосферу (нормальное атмосферное давление). Или: столб воды высотой 10 м давит так же, как вся земная атмосфера.

---------------------------

В: Попробуйте оценить вес всей земной атмосферы.

О: P=pатм4pR2з=105x12x(6,4)21012 @ 4x1019H

----------------------------

Единицы давления

Итак, в системе SI за единицу давления принят 1Н/м2, называемый 1 Паскаль (в честь Блеза Паскаля):

1Н/м2 º1 Па.

Кроме того, в технике (и в старой физике) принято использовать атмосферы:

1 атм @ 105Па.

Давление в 1 атмосферу называется нормальным атмосферным давлением.

Метеорологи выбрали свои единицы измерения давления (атмосферного) - миллиметры ртутного столба (это связано с устройством барометра того времени, когда они выбирались).

Следует запомнить:

760 мм рт.ст. = 1 атм = 105 Па

Гидростатический парадокс

Тот факт, что давление в жидкости зависит только от глубины, приводит к удивительной ситуации.

               
   
     
 
 


РИС

 

 

 
 


Каким образом большой вес воды в левом сосуде уравновешивается малым весом жидкости справа? Разгадка, конечно, в том, что часть веса левой жидкости уравновешивается реакцией стенок сосуда.

РИС

ЗАКОН АРХИМЕДА

РИС (портрет)

Известно, что первым словом, которое произнес Архимед, когда "выскочил голым из ванной", было "Эврика!" - "Нашел!". Вот что он нашел:

на тело, погруженное в жидкость, действует выталкивающая сила, равная весу жидкости, вытесненной телом !

 

 


РИС

Этот закон так же знаменит, как "Танец маленьких лебедей", картина "Утро в сосновом лесу" или кинофильм "Белое солнце пустыни": "Если тело втерто в воду, не потонет оно сроду". (В широких народных кругах еще более известно одно его следствие: "После сытного обеда по закону Архимеда полагается поспать!" Правда, до сих пор все попытки доказать это следствие были исключительно экспериментальными и приводили к большому разбросу результатов.)

Наша очередная задача - вывести закон Архимеда чисто теоретически, из той механики, которая нам уже известна.

 

Вывод закона Архимеда

Теперь приступим. Пусть в воде находится неподвижный брусок - параллелепипед.

РИС

(Понятно, что тело любой формы можно представить в виде набора таких достаточно малых брусков.)

Итак, давление на верхнюю грань будет таким: рверх = ратм + rghверх , а сила, действующая на верхнюю грань бруска: Fверх = рверх S. Соответственно для нижней грани получим: рниж = ратм + rghниж и Fниж = рнижS. Обратите внимание, что столб жидкости непосредственно "не нависает" над нижней гранью. Но по закону Паскаля это не спасает нижнюю грань от давления всей жидкости, которая находится выше.

Результирующая сила, действующая на брусок, это разность нижней (которая больше) и верхней сил давления:

 

Fарх = Fниж - Fверх = рниж S - рверх S = (рниж - рверх)S = (ратм + rghниж - ратм - rghверх)S = (rghниж - rghверх) S =rg (hниж - hверх) S = rgН S = rgV.

 

Итак, получается, что возникает выталкивающая сила, направленная вверх, противоположно силе тяжести, и равная Fарх =rж gVпогр. Здесь Vпогр - объем погруженной части тела (ведь бывает, что тело погружено в жидкость не полностью); rж - это плотность жидкости (а не тела!).

Можно заметить, что rж Vпогр - это масса жидкости в объеме погруженной части тела, т.е. именно масса вытесненной телом жидкости. А тогда архимедова сила Fарх = mж gравна силе тяжести вытесненной телом жидкости или, что то же самое (для неподвижной жидкости), - весу жидкости, вытесненной телом. Это и есть сформулированный нами закон Архимеда:

 
 
Fарх =-rж Vпогрg

 

 


Знак минус учитывает направление силы: противоположно направлению внешней гравитации.

Видно, что своим происхождением сила Архимеда обязана гравитации - в отсутствие силы тяжести никакой разницы в давлении сверху и снизу наш брусок не заметил бы.

На всякий случай: на наш брусок в воде, кроме рассмотренных нами сил, действуют еще и некоторые другие, просто они нас сейчас не интересовали. Какие это силы? Разумеется, есть силы давления жидкости слева и справа.

РИС

Но они компенсируют друг друга, дают суммарный нулевой эффект.

Есть еще и сила тяжести, действующая со стороны Земли на брусок. Она направлена вниз, к Земле и равна F =Мg =rтела Vвсего тела g, где М - масса всего тела и объем V - тоже всего тела (а не его погруженной части!).

2.4.2 Другой вывод закона(метод мысленной замены)

Вместо погруженной части тела представим себе объем жидкости точно такой же формы.

РИС

На это неподвижное "жидкостное" тело действуют две силы - сила Архимеда (точно такая же, как действовала на реальное тело) и собственная сила тяжести выделенного объема жидкости. Поэтому искомая сила Архимеда равна по величине силе тяжести, действующей на жидкость в вытесненном объеме:

Fарх=rж Vпогрg.

Вот и все.

----------------------------------------------

Важные уточнения

Мы сказали, что сила Архимеда направлена противоположно силе тяжести, действующей на наше тело. Это так, если только наш сосуд с жидкостью и погруженным телом не имеет ускорения относительно источника гравитации (Земли). Если же ускорение (в любом направлении - горизонтальное или вертикальное) есть, то выталкивающая сила будет направлена не "вверх", а перпендикулярно поверхности жидкости:

РИС

Поэтому утверждение, что выталкивающая сила Архимеда направлена перпендикулярно поверхности жидкости, является более общим, чем формулировка "направлена противоположно силе тяжести."

Или можно сказать иначе: сила Архимеда направлена противоположно весу тела.

О точке приложения силы Архимеда. (Ведь нельзя же считать плавающее тело материальной точкой - у него не было бы объема, а следовательно, и никакой архимедовой силы просто не возникло бы!) Если наше тело однородное (одинаковой плотности) и жидкость тоже однородная, то нет вопросов: сила Архимеда приложена в геометрическом центре погруженной части тела. Если же однородности нет, то все сложнее, и приходится пользоваться терминами, знакомство с которыми у нас еще впереди: в общем случае архимедова сила приложена там, где был бы центр масс вытесненного объема жидкости:

РИС

Плавание тел

Понятно, что ситуация с телом в жидкости (будет ли оно плавать или утонет) зависит от соотношения этих двух сил: Архимеда и силы тяжести.

Каким образом тяжеленный стальной лайнер плывет, а не тонет? Физически для этого необходимо, чтобы Fарх была равна силе тяжести. Иначе говоря, rж Vпогр = rтелаVтела.Видно, что вся "игра" идет на том, что фактически средняя плотность лайнера много меньше плотности воды (не все, что находится в объеме корабля, сделано из стали - кое-что из воздуха!)

.





Последнее изменение этой страницы: 2016-04-19; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.238.190.82 (0.022 с.)