Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Графічний метод визначення зусиль в стержнях ферми.Содержание книги
Поиск на нашем сайте
Графічний метод визначення зусиль в стержнях ферми – це побудова замкнутих багатокутників сил, які сходяться в одній точці. Кожен вузол ферми можна розглядати як точку, до якої прикладена зрівноважена система зовнішніх і внутрішніх сил. Якщо число невідомих зусиль в стержнях, які сходяться в одному вузлі, не більше двох, то побудувавши для даного вузла замкнутий багатокутник сил, зможемо графічно визначити невідомі зусилля. Розглянемо приклад: В опорному вузлі А сходяться чотири зрівноважуючі сили – реакція VА = 2Р, сила Р1 = Р/2 (зовнішні зусилля) і внутрішні зусилля в стержнях O1 і U1. Вирізаємо цей вузол і будуємо для нього замкнутий багатокутник сил. Відкладаємо вверх відрізок 1-2 який дорівнює VА = 2Р (в масштабі), з точки 2 будуємо вниз відрізок 2-3, який рівний силі Р1 = Р/2. З точки 3 будуємо лінію паралельну зусиллю О1, а з точки 1 лінію паралельну зусиллю U1. Вони перетнуться в точці 4, утворивши замкнутий трикутник 1-2-3-4-1. Довжини 3-4 і 4-1 виміряні в масштабі сил, дадуть величину зусиль в стержнях О1і U1. Так поступово вирізуючи вузол за вузлом можемо визначити зусилля в кожному стержні. Послідовність вирізання вузлів визначається тим, що в кожному вузлі має бути не більше двох невідомих сил. Кожному вузлу буде відповідати окремий замкнутий силовий багатокутник.
38. Для того, щоб визначити зусилля у всіх стержнях ферми, потрібно побудувати стільки силових багатокутників, скільки є вузлів. Але розкидані окремі силові багатокутники, у яких кожне внутрішнє зусилля в стержні повторюється два рази, так як любий стержень входить в склад двох вузлів, не зручні. Англійський фізик Максвел і італійський математик Кремона майже одночасно (Максвел – 1870 р., Кремона – 1872 р.) запропонували вдосконалити спосіб визначення зусиль в стержнях ферми методом вирізання вузлів шляхом об’єднання силових багатокутників, побудованих для окремих стержнів, в одну загальну діаграму, в якій кожне зусилля в стержнях зустрічається один раз. Така діаграма називається діаграма Максвела - Кремони. На практиці її називають діаграмою зусиль. Для побудови діаграми попередньо потрібно визначити слідуюче: 1) зобразити в масштабі схему ферми з прикладеними у вузлах заданими силами і реакціями опор, які повинні бути визначені попередньо. 2) ділянки площини ферми між сусідніми зовнішніми силами, а також частини площини всередині решітки утворюють зовнішні і внутрішні райони ферми (ще називаються зонами або полями). Зовнішні райони будемо позначати буквами а,в,с,… (за годинниковою стрілкою), а внутрішні цифрами 1,2,3,... 3) позначаємо зовнішні сили, активні і реактивні, двома буквами по назві стержневих районів. Так сила Р1 буде позначатися а-в, сила Р2--в-с, права опорна реакція -- k-i, ліва -- і-а. 4) позначаємо зусилля в стержнях ферми двома цифрами чи буквою і цифрою по назві стержневих районів, дотримуючись правила обходу вузла за годинниковою стрілкою (U1 -- 1-і;О1 – в-1,..). Наприклад:
39. Тема 7. Cтатично невизначені системи.
Загальні відомості. Зайві зв’язки в статично невизначених системах являються зайвими з точки зору забезпечення незмінності і рівноваги системи, яка без них може бути незмінною і знаходитись у рівновазі. Встановлення таких зв’язків викликається конструктивними особливостями системи. Наприклад: Балка АВСД має два зайвих зв’язки. Якщо відкинути В і С або С і Д то в обох випадках балка буде незмінною. Однак на практиці вона буде непридатною, оскільки у 1 випадку при великому прольоті, у 11 – при великій довжині консолі -- виникнуть великі згинальні моменти. До статично невизначених відносяться слідуючі системи: 1) Балки: багато прольотні нерозрізні, одно прольотні з одним чи двома защемленими кінцями. 2) Арки: безшарнірні і двохшарнірні арки. Безшарнірні – тричі статично невизначені, двохшарнірні – один раз. Дуже рідко зустрічаються одношарнірні арки і арки з защемленими кінцями і шарніром в ключі – двічі статично невизначені. 3) Рами. 4) Ферми: з зайвими стержнями в самій фермі чи з зайвими опорними стержнями. 40.
|
||||||||||
Последнее изменение этой страницы: 2016-04-18; просмотров: 691; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.226.187.60 (0.009 с.) |