![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Приток жидкости к бесконечным цепочкам и кольцевым батареям скважин.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте На примере притока жидкости к нескольким рядам или кольцевым батареям скважин ознакомимся с широко применяемым при проектировании разработки нефтяных месторождений методом эквивалентных фильтрационных сопротивлений, предложенным Ю. П. Борисовым и основанным на аналогии движения жидкости в пористой среде с течением электрического тока в проводниках. Рассмотрим без вывода задачу о притоке жидкости к одной цепочке скважин, расположенных на расстояниях 2
Решение задачи заключается в следующем. Цепочка скважин-стоков отображается зеркально относительно контура питания в скважины-источники, и рассматривается интерференция двух цепочек скважин в неограниченном пласте. Вдоль прямой АВ, проходящей через скважины (как говорят, вдоль главной линии тока), частицы жидкости будут двигаться наиболее быстро. Прямую А’В’ и ей подобные, делящие расстояние между скважинами пополам, в силу симметрии потока можно рассматривать как непроницаемые границы, вдоль которых движение будет наиболее медленным. Они называются нейтральными линиями тока. Характер распределения потенциалов вдоль этих прямых АВ и А'В' показан на рис. 9. Задача решается методом суперпозиции. Результаты решения показывают, что на расстоянии от контура питания до половины расстояния между скважинами движение жидкости практически прямолинейное и падение потенциала на этом участке происходит по закону прямолинейной фильтрации. Основное падение потенциала происходит вблизи скважины, где характер движения близок к радиальному. При этом дебит каждой скважины цепочки выражается следующей формулой: где В случае, когда Отсюда следует, что при
Вводя обозначения: формулу (28) представим в виде:
аналогичному закону Ома.
Величина Аналогом объемного расхода q служит сила тока, а аналогом разности фильтрационных потенциалов - разность электрических потенциалов. Суммарный дебит всей прямолинейной цепочки из n скважин:
Из формулы (30) получили выражение для внешнего фильтрационного сопротивления цепочки: которое представляет собой сопротивление потоку жидкости от контура питания до галереи длиной
выражает сопротивление, возникающее при подходе жидкости к скважинам в зоне радиусом где L1,L2, L3 - расстояния соответственно от контура питания до первой цепочки, между первой и второй цепочками, между второй и третьей цепочками. Внутренние сопротивления определяются по формулам:
Отметим, что приток жидкости к трем кольцевым батареям скважин, соосным круговому контуру питания, рассчитывается по той же схеме эквивалентных фильтрационных сопротивлений (см. рис. 11), что и для цепочек скважин. При этом внешние фильтрационные сопротивления будут выражаться так:
где R1, R2, R3 - радиусы батарей. Внутренние фильтрационные сопротивления определяются по формулам (31).
|
||
Последнее изменение этой страницы: 2016-04-18; просмотров: 513; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.97.9.168 (0.007 с.) |