Решение основных стыков и узлов сопряжений конструктивных элементов в крупнопанельных гражданских зданиях. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Решение основных стыков и узлов сопряжений конструктивных элементов в крупнопанельных гражданских зданиях.



Сопряжение панелей стен между собой и с перекрытиями называются стыками. Эксплуатационные качества крупнопанельных домов во многом зависят от конструктивного исполнения стыков. Стыки должны быть прочными, долговечными, водо- и воздухонепроницаемыми, иметь достаточную теплозащиту и быть несложными по способу заделки. Стыки наружных стен подразделяют по расположению на горизонтальные и вертикальные.

Вертикальные стыки по способу связей панелей между собой разделяют на упругоподатливые и жёсткие (монолитные). При устройстве упругоподатливого стыка (рис. 1) панели соединяются с помощью стальных связей, привариваемых к закладным деталям, стыкуемых элементов. В паз, образуемый четвертями, входит на глубину 50 мм стеновая панель внутренней поперечной стены. Соединяют панели с помощью накладки из полосовой стали, привариваемой к закладным деталям панели. Для герметизации стыка в его узкую щель заводят уплотнительный шнур гернита на клею или пороизола на мастике. С наружной стороны стык промазывают специальной мастикой – тиоколовым герметиком. Для изоляции от проникновения влаги с внутренней стороны стыка наклеивают на битумной мастике вертикальную полоску из одного слоя гидроизола или рубероида. Вертикальные колодцы стыка заполняют тяжелым бетоном. Недостатком упругоподатливых стыков является возможность коррозии стальных связей и закладных деталей. Такие крепления податливы и не всегда обеспечивают длительную совместную работу сопрягаемых панелей и, следовательно, не могут предохранить стык от появления трещин.

Рис. 1. Конструкция вертикального упругоподатливого стыка панелей: 1 – стальная накладка, 2 – закладные детали, 3 – тяжелый бетон, 4 – термовкладыш, 5 – полоса гидроизола или рубероида, 6 – гернит или пороизол, 7 – раствор или герметик

Более распространёнными в работе являются жёсткие монолитные стыки. Прочность соединения между стыкуемыми элементами обеспечивается замоноличиванием соединяющей стальной арматуры бетоном. На рис. 2 – монолитный стык однослойных стеновых панелей с петлевыми выпусками арматуры, соединительными скобами из круглой стали диаметром 12 мм. Между замоноличенной зоной стыка и герметизацией образована воздушная вертикальная полость, которая служит дренажным каналом, отводящим попадающую внутрь шва воду с выпуском ее наружу на уровне цоколя. Нередко в стык панелей для повышения его теплозащитных свойств укладывают минераловатный вкладыш, обернутый полиэтиленовой плёнкой, или из пенопласта. Для устройства жёстких стыков используют также сварные анкеры – связи, которые представляют собой Т- образные элементы, изготовленные из полосовой стали и располагаемые в стыке «на ребро». При этом в стеновых панелях оставляют концевые выпуски арматуры (в пределах габарита форм), которые приваривают после установки панелей к концам анкеров. Такое соединение позволяет обеспечить возможность плотного заполнения полости стыка бетоном, уменьшить почти в 3 раза расход стали.

Рис. 2. Жесткий монолитный вертикальный стык:а – вертикальный стык, б – то же, с утепляющим пакетом, 1 – наружная керамзитобетонная панель, 2 – анкер диаметром 12 мм, 3 – дренажный канал, 4 - пороизоловый жгут, 5 – герметик, 6 – прокладка, 7 – скобы, 8 - бетон, 9 – внутренняя несущая панель из железобетона, 10 - петля, 11 – минераловатный пакет

Рис. 3. Конструкция горизонтального стыка однослойных стеновых панелей: 1 – железобетонная панель перекрытия, 2 – цементный раствор, 3 - стеновая панель, 4 – противодолжевой барьер, 5 – герметизирующая мастика), 6 – пороизол или гернит, 7 – термовкладыш в гидроизоляционной оболочке (тиоколовая или полиизобутиленовая УМС-50), 6 – пороизол или гернит, 7 – термовкладыш в гидроизоляционной оболочке


Для устройства горизонтальных стыков верхнюю стеновую панелей укладывают на нижнюю на цементном растворе. При этом через горизонтальный шов, плотно заполненный раствором, дождевая вода может проникать вследствие капиллярного подсоса воды через раствор, поэтому в нем устраивают противодождевой барьер, идущий сверху вниз. На наклонной части раствор прерывают и создают воздушный зазор, в пределах которого подъем влаги по капиллярам прекращается (рис. 3).

Соединение панелей внутренних стен бескаркасных зданий осуществляется путем сварки соединительных стержней диаметром 12 мм к закладным деталям по верху панели. Вертикальные швы между панелями заполняют упругими прокладками из антисептированных мягких древесноволокнистых плит, обернутых толем, а вертикальный канал заполняют мелкозернистым бетоном или раствором.

пленкой), 4 — термоизоляционный слой панели, 5 — тяжелый бетон

Рис. 12.12. Соединение стеновых панелей с помощью сварного стального анкера-связи:
1 — арматурные выпуски из панелей, 2 — сварные швы, 3 — Т-обраэный анкер-связь 4 — деталь анкера-связи

Рис. 12.13. Беэметалльный стык панелей:
а — горизонтальный стык, 6 — вертикальный стык, в - схема панели, 1 — герметизирующая мастика, 2 — уплотнительный шнур, 3 - панель наружной стены, 4 — раствор, 5 — утеплитель, 6 — панель перекрытия, 7— панель внутренней поперечной стены, 8— гернит или пороизол, 9— шпонка

Рис. 12.14. Конструкция горизонтального стыка однослойных стеновых панелей: 1 — железобетонная панель перекрытия, 2 — цементный раствор, 3 — стеновая панель, 4 — противодождевой барьер, 5 — герметизирующая мастика (тиоколовая или полиизобутиленовая УМС-50), 6 — пороизол или гернит, 7 — термовкладыш в гидроизоляционной оболочке

Интересным является устройство стыка в виде ласточкина хвоста, разработанное в ЦНИИЭП жилища. При этом почти полностью можно отказаться от применения стальных связей (рис. 12.13).
Для устройства горизонтальных стыков верхнюю стеновую панель укладывают на нижнюю на цементном растворе. При этом через горизонтальный шов, плотно заполненный раствором, дождевая вода может проникать главным образом вследствие капиллярного подсоса воды через раствор. Ног почему принята такая сложная геометрия горизонтального стыка (рис. 12.14). В нем устраивают гак называемый противодо-ждевой барьер или зуб в виде гребня, идущего сверху вниз. На наклонной части раствор прерывают и создают воздушный зазор, в пределах которого подъем влаги по капиллярам прекращается.
Таким образом, мы видим, что для обеспечения нормальных эксплуатационных качеств стен из крупных панелей для устройства стыков применяют различные материалы, имеющие самые разнообразные физико-механические свойства: крепежные (сталь), утепляющие (минераловатные вкладыши), гидроизолирующие (рубероид или изол), связующие и уплотняющие (бетон и раствор), герметизирующие (пороизол или гернит и мастики). Все эти материалы имеют разную долговечность и часто гораздо меньшую срока службы здания. Вот почему при конструировании стыков панелей и их исполнении необходимо особое внимание уделять возможности обеспечения высокого качества производства строительных работ, применяя для этого материалы только с хорошими физико-механичес кими свойствами.
Соединение панелей внутренних стен бескаркасных зданий (рис. 12.15) осуществляется путем сварки соединительных стержней диаметром 12 мм к закладным деталям по верху панели. Вертикальные швы между панелями заполняют упруги-ми прокладками из антисептированных мягких древесноволокнистых плит, обернутых толем, а вертикальный канал заполняют мелкозернистым бетоном или раствором.

Рис. 12.15. Конструкция стыка внутренних стен:
а — на уронне перекрытий, б — на уровне течения панелей, 1 — соединительные стержни диаметром 12 мм, 2— закладные детали, 3 — монолитный бетон, 4 — панель продольной внутренней стены, 5 — упругая прокладка (антисептировинная мягкая Древесноволокнистая плита, обернутая толем), 6 — цементный раствор

На рис. 12.16 показан узел оттирания плит перекрытия на внутреннюю панель и соединение панелей с помощью самофиксирующего болта.
Нередко горизонтальный стык между несущими панелями поперечных стен и перекрытий проектируют платформенного типа (рис. 12.17), особенностью которого является оттирание перекрытий на половину толщины поперечных стеновых панелей, при котором усилия в верхней итеновой панели на нижнюю передаются через опорные части панелей перекрытий. Швы между панелями и плитами выполняют на растворе. Однако в случае неполного заполнения швов раствором В отдельных участках панелей может воз-никнуть опасность концентрации напряжения. Чтобы предотвратить это явление, для стыковых соединений применяют цементно-песчаную пластифицированную пасту, из которой можно получать тонкие швы толщиной 4...5 мм. Такая паста состоит из поргланд цемента марки 400...500 и мелкого песка с максимальным размером частиц 0,6 мм (состав 1: 1) с добавлением пластифицирующей и противоморозной добавки нитрата натрия в количестве 5..10% от массы цемента. Такая паста как бы склеивает панели между собой.

Рис, 12.16. Конструкция соединения панелей внутренних стен и перекрытий: 1 — цементный раствор, 2 - стеновая внутренняя панель, 3 — паз длиной 100 мм, 4 — самофиксирующийся болт диаметром 25 мм, 5 — панель перекрытия

Рис. 12.17, Конструкция горизонтального платформенного стыка панелей внутренних поперечных несущих стен:
1 — панель внутренней стены, 2 — панель перекрытия, 3 — цементно-песчаная паста

20. Основные конструктивные элементы каркасно-панельных гражданских зданий. Пространст­венная жёсткость и стыки конструкций каркасно-панельных зданий.

Для жилых зданий высотой в 16—25 этажей в каталоге индустриальных изделий предусмотрена каркасная конструктивная схема. Каркасы крупнопанельных жилых зданий высотой в 16—25 этажей делают сборными из железобетонных элементов заводского изготовления. По характеру статической работы различают три вида каркасов: рамный, связевой и рамно-связевой. В рамных каркасах все вертикальные и горизонтальные нагрузки воспринимают рамы с жесткими узлами.
В связевых каркасах колонны и ригели каркаса рассчитаны только на вертикальные нагрузки при шарнирных соединениях в узлах, а ветровые и другие горизонтальные нагрузки через перекрытия передаются на жесткие поперечные вертикальные связи (диафрагмы жесткости).
В некоторых случаях каркас проектируют по комбинированной рамно-связевой схеме с передачей вертикальных нагрузок на поперечные рамы с жесткими узлами, а горизонтальных — на вертикальные связи диафрагмы жесткости (как в связевой системе).
В современных каркасных крупнопанельных жилых зданиях повышенной этажности применяют главным образом связевую конструктивную схему. При этой схеме по сравнению с рамной снижается расход стали примерно на 20%, достигается большая жесткость и упрощается конструкция узлов. Кроме того, связевая схема обеспечивает независимость усилий в ригелях от их положения в плане и по высоте здания, благодаря чему создается возможность полной унификации ригелей а их опорных узлов

Фото Рис. 253. Элементы унифицированного сборного железобетонного каркаса:
а— колонна; б — рядовой ригель; в — наружный ригель; г — диафрагма жесткости и ее соединение с колонной; д — расположение в плане пространственных диафрагм жесткости; 1— колонна; 2 — стенка жесткости; 3 — консоль стенки; 4 — закладные детали; 5 — стальные накладки
Фото Рис. 254. Конструкции стыков колонн:
а — сферический с передачей усилий с бетона на бетон: а—стержни; 1 — 36 мм из стали класса А-ΙΙΙ, стыкуемые ванной сваркой; 2 — стыковые ниши; 3 — сферическая бетонная поверхность; 4 — паз для монтажного хомута: б — плоский безметальный стык: 1 — центрирующий бетонный выступ: 2 — ванная сварка выпусков арматуры, 3— раствор марки 300; 4 — стыковые ниши; 5 — продольные арматурные стержни; 6— поперечные арматурные сетки

Унифицированный каркас, принятый каталогом унифицированных изделий по связевой системе, был рассмотрен в § 52 (см. рис. 99). Этот каркас состоит из двухэтажных колонн сечением 400X400 мм, имеющих консоли вылетом 150 мм, рядовых ригелей сечением 400Х Х450 мм и пустотных настилов-распорок толщиной 220 мм, шириной (номинальной) внутренних 1200, 1800 и 2400 мм и наружных — 1080 мм.
Пространственная жесткость каркаса обеспечивается диафрагмами жесткости, которые рекомендуется проектировать в виде пространственных стенок на всю ширину здания из железобетонных панелей толщиной 180 мм, соединенных с колоннами сваркой выпусков арматуры или закладных деталей и замоноличиванием.
На рис. 253 показаны элементы унифицированного сборного железобетонного каркаса; колонны двухэтажные, рядовой ригель, наружный ригель, диафрагма жесткости и ее соединение с колонной, а также расположение в плане диафрагм жесткости.
Наиболее ответственной в сборном железобетонном каркасе является конструкция стыков колонн. Применяют два основных типа стыков, в которых усилия передаются черев стальные оголовки и с бетона на бетон.
Для устройства стыков первого типа требуется много металла и они трудоемки в изготовлении. Более рациональны стыки второго типа, в которых усилия с бетона на бетон передаются через сферические торцовые поверхности колонн (рис. 254, а).
Фото Рис. 255. Конструкции узла опирают ригеля на колонну в унифицированном каркасе:
а— общий вид узла: б — конструкции узла; 1 — колонна; 2 — ригель; 3— настил-распорка; 4 — закладные детали; 5 — верхняя накладка; 6 — сварные швы

Стыки арматуры выполняют с помощью ванной сварки.

Такая конструкция стыка была принята для унифицированного каркаса. Однако позже было установлено, что более простые стыки с плоскими торцами колонн, армированные сетками, при центральном сжатии могут выдерживать на смятие огромные напряжения, превышающие призменную прочность бетона в 5—10 раз. Изготовлять эти стыки гораздо проще, чем сферические. Поэтому для каталога индустриальных изделий были приняты плоские стыки. При этом концы колонн усилены армированием поперечными сварными сетками, плоские торцы имеют центрирующую бетонную площадку, выступающую на 20—25 мм и снабженную сеткой (рис. 254, б). Выпуски арматуры соединяют ванной сваркой и стык замоноличивают.
Для перекрытий каркасных зданий каталогом предусмотрены круглопустотные панели толщиной 220 мм и шириной 800, 1200, 1800, 2400 и 3000 мм.
Конструкция узла опирания ригеля на колонну и настила-распорки на ригель показана на рис. 255. Сопряжение ригеля с колонкой выполнено со «скрытой консолью». Навесные панели наружных стен в каркасных зданиях предусмотрены каталогом те же, что и в панельных, за исключением панелей наружных и внутренних углов зданий, пилястр и угловых панелей уступов наружных стен (рис. 256). Эти панели выполняют из керамзитобетона: толщина их принята 340 и 300 мм.
Панели наружных стен устанавливают относительно модульных разбивочных осей со следующими привязками (рис. 257): внутренняя грань стены вынесена наружу за модульную ось на 400 мм или внутренняя грань стены заходит внутрь здания на 200 мм за модульную ось.

Фото Рис. 256. Специальные панели наружных стен:
а— наружных углов здания; б — внутренних углов; в — пилястр; г — угловых для уступов наружных стен

Фото Рис. 258. Углы опирания наружных стеновых панелей на поперечный (а) и продольный (б) каркас:
1— колонна; 2 — ригель: 3 — панель перекрытия; 4 — керамзитобетонная панель; 5 — закладные детали; 6 — скоба; 7 — монтажные уголки; 8 — керамзитобетон

Принятая система привязок дает возможность пропускать стояки отопления между стеной и колонной, устанавливать в необходимых случаях панели наружных стен так, чтобы внутренняя плоскость стены совпадала с внутренней гранью колонны, благодаря чему колонны не выступают в помещение. Кроме того, привязка угловых панелей уступов наружных стен обеспечивает их максимальное приближение к колонне и ригелю, что облегчает их навеску на каркас.

Наружные стеновые панели в каркасных зданиях опирают либо на краевой элемент перекрытия настил-распорку, либо на наружный продольный ригель. Крепят стеновые панели к колонне с помощью стальных пластин, приваренных к закладным деталям.

На рис. 258 показаны узлы опирания наружных стеновых панелей на элементы унифицированного каркаса и конструкции креплений. На рис. 259 изображен другой вариант опирания панелей наружных стен на наружный ригель каркаса, соответствующий типу ригеля и привязке, предусмотренных каталогом унифицированных изделий для Москвы.

Для устройства лоджий в каркасных зданиях предусмотрены железобетонные навесные стенки 1 лоджий, вставляемые в вертикальный шов между панелями наружных стен и опираемые на консоли пристенных колонн (рис. 260).

Плиты лоджий укладывают поверх их навесных стен, а самую нижнюю плиту подвешивают к нижней стенке лоджии на сварке, так что эта стенка несет, таким образом, две плиты.

Фото Рис. 259. Узел опирания панели наружной стены на наружный ригель, предусмотренный каталогом индустриальных изделий:
1 — панель наружной стены; 2 — колонна; 3 — пустотная панель перекрытия; 4 — наружный ригель; 5 — консоль колонны

Фото Рис. 260. Лоджии каркасных зданий:
а — вертикальная навесная стенка лоджии; б — расположение навесных стенок в плане

Толщина средних стен лоджий принята равной 200 мм, крайних — 100 мм. Плиты лоджий опирают на стенки лоджий на 90 мм.

Все плиты, за исключением плит для западающих лоджий и плит, устанавливаемых в местах уступов наружных стен, применяют одновременно и в каркасных и в панельных зданиях. Плиты лоджий шириной 1200 мм являются одновременно и плитами балконов каркасных домов, но их опирают не на стены лоджий, а на консоли, привариваемые в тех же местах к колоннам (рис. 261).

Кроме железобетонных плит балконов, укладываемых на консоли, в номенклатуре предусмотрены керамзитобетонные плиты балконов, являющиеся продолжением перекрытия, которое выпускается наружу сквозь горизонтальные швы между панелями.

Квартиры запроектированы по принципу зонирования. Группа помещений, общих для всей семьи — общая комната и первая прихожая, выделена в первую зону, расположенную ближе к входу. Спальные комнаты, санитарный узел с ванной и второй коридор составляют вторую зону.
При проектировании каркасно-панельных домов высотой 25 м и более используют конструктивную схему с монолитным ядром жесткости, которое воспринимает все действующие горизонтальные нагрузки и обеспечивает пространственную жесткость здания. Ядро жесткости располагают в средней части (в домах башенного типа) или симметрично относительно центральных осей (в зданиях большой протяженности, рис. 263), в нем обычно размещают все вертикальные коммуникации (лифтовые шахты, лестницы).
Ядро жесткости целесообразно возводить в подвижной опалубке с помощью специального агрегата, в котором совмещены скользящая опалубка и подъемные домкраты.
Конструктивная схема здания с монолитным ядром жесткости по сравнению со схемами с плоскими стенками жесткости выгоднее по трудоемкости на 6%, по себестоимости изготовления и монтажа конструкции — на 14%, по капитальным вложениям на возведение конструкций — на 15%, по расходу стали — на 10%.
В зданиях высотой выше 16 этажей, в которых на одну опору нагрузки достигают 800 Т и выше, целесообразно применять сплошные железобетонные монолитные фундаментные ребристые плиты, распределяющие давление по всей площади основания дома.
Так, под 25-этажными домами на проспекте Калинина в Москве уложены монолитные ребристые фундаментные плиты толщиной 600 мм с ребрами общей высотой 2000 мм.



Поделиться:


Последнее изменение этой страницы: 2016-04-08; просмотров: 4229; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.139.238.76 (0.024 с.)