Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Законы логики высказываний - это формулы, принимающие значение «истина» при всех наборах значений своих пропозициональных переменных.Содержание книги
Поиск на нашем сайте
Такие всегда истинные выражения называют иногда еще и общезначимыми. Помимо того, что они позволяют исследовать мысль, не обращаясь к ее содержанию, сверх этого они еще и помогают совершать логические операции. Их можно в некоторых случаях исключать из выражений или, наоборот, вставлять в них, не внося при этом искажений в содержание заложенной в формулу мысли. Особенно часто приходится использовать такой прием при работе с нормальными формами. С помощью тождественно-истинных выражений легко записать и законы традиционной логики. Так, в формуле нетрудно узнать закон запрета противоречия, а в формуле - закон исключенного третьего. В самом деле, заменив в первой из них буквенную переменную на предложение «Гриб ядовитый», мы получим из данной формулы правильное высказывание: «Неверно, что гриб ядовитый и неядовитый». Проделав то же самое со второй, мы получим другое истинное высказывание: «Гриб либо ядовитый, либо неядовитый». На данной стадии мы в состоянии дать обоснование данным законам, опираясь на изложенные ранее принципы и правила. Формула для закона противоречия преобразуется в выражение, не содержащее отрицания над скобкой, если провести ряд эквивалентных замен, используя правила (1) и (2): Легко видеть, что в данной дизъюнкции при любом значении переменной будет содержаться 1, а этого достаточно для того, чтобы дизъюнкция оказалась истинной (см. также раздел об элементарных дизъюнкциях). Общезначимость формулы для закона исключенного третьего непосредственно вытекает из полученной нами ранее формулы: Применяя ее к выражению , получим: Следовательно, и это выражение является истинным при любом значении переменной. Формулы символической логики второй разновидности из приведенных в таблице являются тождественно-ложными, поскольку всегда принимают значение «ложь». В этом смысле они противоположны формулам-законам. Правильнее всего поэтому называть такие выражения противоречиями. Противоречия - это формулы логики высказываний, принимающие значения «ложь» при любом наборе своих пропозициональных переменных. Не надо, однако, смотреть на формулы-противоречия как на какую-то досадную помеху в логике высказываний. Во-первых, превращение их в законы осуществляется простым отрицанием (это отличает противоречия символической логики от противоречий в логике традиционной). Так, закон противоречия представляет собой простое отрицание тождественно-ложного выражения Во-вторых, постоянство семантического значения, даже ложного, все равно дает основу для анализа высказывания, записанного с помощью тождественно-ложной формулы. В-третьих, они, так же как и тождественно-истинные выражения, помогают осуществлять логические преобразования, упрощать когда надо сложные формулы. Последняя категория выражений символической логики имеет в наборе своих значений как «истину», так и «ложь». Такой является третья из приведенных нами формул. Выражения данной разновидности называют нейтральными.
|
||||
Последнее изменение этой страницы: 2021-04-05; просмотров: 100; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.218.234 (0.01 с.) |