Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Сопротивление хрупкому разрушению

Поиск

Существенным фактором, ограничивающим выбор стали для сварных конструкций и, в частности, препятствующим дальнейшему повышению ее прочности обычным легированием (например, кремнием), является требование хладостойкости. Для строительной стали с ним ассоциируется сопротивление хрупкому разрушению микросколом. При этом виде разрушения зерна металла раскалываются по определенным кристаллографическим плоскостям с образованием в изломе характерных «кристаллических» фасеток и «ручьевого узора».

Разрушения этого вида особенно опасны, так как происходят внезапно, распространяясь с высокой скоростью без заметной макропластической деформации, часто даже при весьма низких напряжениях от рабочей нагрузки. Сварные конструкции подвержены хрупкому разрушению микросколом более других. Этому способствует концентрация напряжений, структурная и механическая неоднородность, неразъемность и высокий уровень сварочных напряжений.

Хладостойкость элемента конструкции определяется температурой хрупкости, при которой возможен переход от вязкого разрушения к хрупкому разрушению микросколом. На изменение этой температуры влияют как физические свойства стали (предел текучести, микроструктура), так и «внешние» условия нагружения (напряжение, жесткость напряженно-деформированного состояния, величина и скорость деформации).

Велика роль особенностей внешнего нагружения. Так, переход от условий растяжения гладкого образца к растяжению элемента с острым концентратором напряжений повышает критическую температуру перехода в хрупкое состояние Tk для строительной стали на 170-200 ºС.

Также любой из факторов, упрочняющих сталь и вызывающих повышение предела текучести (наклеп, старение, радиационное упрочнение и др.), повышает Tk, т.е. охрупчивает материал, а измельчение зерна микроструктуры, напротив, снижает Tk, т.е. повышает хладостойкость. Следовательно, непременным условием сохранения хладостойкости при повышении прочности является измельчение микроструктуры.

На основании исследований особенностей хрупкого разрушения микросколом предложено много способов экспериментальной оценки хладостойкости сварных соединений. Почти все они предусматривают многократные (сериальные) испытания одинаковых (для данного способа) по размерам и форме образцов, но при разных температурах. Показателем качества металла служит температура, при которой контролируемый признак (поглощенная при разрушении образца работа, доля волокна в изломе образца, сужение под надрезом в разрушенном образце, разрушающее напряжение и т.п.) по мере проявления хрупкости с понижением температуры достигает некоторой нормируемой величины.

Приведем некоторые основные методы, получившие наибольшее распространение:

·испытание на динамический изгиб стандартных (призматических) образцов по ГОСТ 6996-66 на ударную вязкость с полукруглым (r=1 мм) или треугольным (r=0,25 мм) надрезами, а также с концентратором в виде трещины усталости;

·испытание на растяжение или изгиб крупных плоских (листовых) образцов натурной толщины с глубокими надрезами или трещинами усталости на кромках;

·определение температуры остановки инициированной трещины на крупных листовых образцах натурной толщины по Робертсону.

Наряду с концепцией переходной (критической) температуры, широко используемой в механике хрупкого разрушения, разработаны и получили значительное развитие аналитические методы, основанные на рассмотрении поля упругих напряжений в вершине трещины. При этом для оценки сопротивления сталей хрупкому разрушению применяются энергетические, силовые и деформационные критерии механики разрушения. С использованием указанных критериев представляется возможным установить связь между разрушающим (или допустимым) напряжением и размером трещины, которая гипотетически может присутствовать в конструкции.

Основным критерием механики разрушения служит коэффициент интенсивности напряжений К, предложенный Ирвином (США), как параметр, определяющий поле упругих напряжений перед фронтом трещины, и является функцией приложенного напряжения и формы трещины. При переходе в хрупкое состояние трещина развивается при средних напряжениях в нетто сечении ниже предела упругости. В упругой области напряжений для трещины в бесконечно широкой пластине, нагруженной нормальными напряжениями, направленными перпендикулярно трещине, выражение для коэффициента интенсивности напряжений К имеет вид:

К = σ √ (3,14∙L),

где σ - номинальное напряжение; L - половина длины центральной сквозной трещины.

При других формах тел и расположении трещин, а также при переходе к телам ограниченных размеров и изменении характера распределения номинальных напряжений в формулу вводится соответствующая поправочная функция:

К = f ∙ σ √ (3,14∙L).

При достижении напряжениями критических значений σкр (момент начала настабильного разрушения) коэффициент интенсивности напряжений также достигает критического для данного материала значения:

Кс = σкр √ (3,14∙L).

При наиболее жестком напряженном состоянии, известном как «плоская деформация», критическое значение коэффициента интенсивности напряжений обозначается К.

Кявляются, таким образом, характеристиками материала, которые определяются его способностью сопротивляться распространению трещины. Ниже представлены значения КМПа√м для некоторых марок сталей:

Ст3сп………………… 60 - 80 МПа√м

09Г2С…………………65 - 90

10Г2С1………………..75 - 90

10ХСНД…………..…100 - 120

16Г2АФ…………… 110 - 130

Зная значение Кдля выбранной марки стали, проектировщик может рассчитать значение напряжения, вызывающее нестабильное разрушение при наличии трещиноподобного дефекта определенного размера и формы при наиболее жестком напряженном состоянии.

 



Поделиться:


Последнее изменение этой страницы: 2021-04-04; просмотров: 104; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.147.77.51 (0.007 с.)