Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Topic: The elements of chemical thermodynamics and bioenergetics TermochemistryСодержание книги
Поиск на нашем сайте
The heat effects of chemical reactions are connected with a change of the internal energy of the system during the transformation of reactants (U1) into products (U2) Δ U = U2 – U1 The change of internal energy depends only on the initial and final states of the system and not on how the change is accomplished. Initial and final states are determined only by pressure (P), volume (V) and temperature (T): Q =Δ U + A (The first law of thermodynamics) ΔU = Q – A, U2 – U1 = Q –A, where Q –heat, A –work of expansion. At the constant pressure A equals: P∙∆V = P∙(V2 – V1), where V1 and V2 – the volume of the system in initial (V1) and final (V2) states. Therefore: Qp = (U2- U1) + P∙(V2 – V1) = (U2 + P∙V1) – (U1 + P∙V1). The sum U + P∙V is called enthalpy H: Δ H =Δ U + P∙ΔV The heat effect of reaction (if the pressure is constant) Qp equals the change of enthalpy ∆H: Qp = H2 – H1 = ∆H. For the constant pressure: ∆H = ∑Hfinal - ∑Hinitial. If the volume is constant, heat effect of reaction Qv equals the change of the internal energy of the system: Qv = U2 – U1 = ∆U. For the constant volume: ∆U = ∑Ufinal - ∑Uinitial. Thermochemical calculations are based on the Hess’s law and on the consequences of this law. For the reaction A → D, proceeding with intermediate stages, ∆H are: A → B, ∆H1 B → C, ∆H2 C → D, ∆H3 According to the Hess’s law: ∆H= ∆H1 + ∆H2 + ∆H3 or the polygon of Hess (look at the Fig.) shows: the heat effects of direct convert or through the intermediate stages are equal to: ∆H= ∆H1 + ∆H2 + ∆H3 ∆H A D
∆H1 ∆H3
B C ∆H2 The Hess’s law is applied not only for chemical reactions, but for the all processes with the heat effects: phase conversions, dissolving, crystallization, evaporation., and so on. According to the consequences of Hess’s law: aA + bB = cC + dD ∆Hof reaction = ∑∆Hf (prod.) - ∑∆Hf (reactants) = = [c∙∆Hf(C) + d∙∆Hf(D)] - [a∙∆Hf(A) + b∙∆Hf(B)] ∆Hof reaction = ∑∆Hcombustion (of react.) - ∑∆Hcombustion (product) = = [a∙∆Hcom(A) + b∙∆Hcom(B)] - [c∙∆Hcom(C) + d∙∆Hcom(D)] If the enthalpy of the reaction decreases the reaction is named exothermic (∆H<0), but if the enthalpy increases, this reaction is endothermic (∆H>0). The direction of spontaneous proceeding of the reaction is determined by the simultaneous actions of two factors: a) enthalpy, ∆H<0 b) entropy, ∆S<0 (or T∙∆S). To calculate the change of entropy of the chemical reaction, the first consequence of Hess’s law is applied: ∆S reaction = ∑∆Sf (prod.) - ∑∆Sf (react.) The change of volume of the system changes the entropy 1) ∆S>0, if V2 > V1; because V2 – V1 = ∆V, ∆V>0 2) ∆S<0, if V2 < V1; because V2 – V1 = ∆V, ∆V<0. The process will be spontaneous in its nature if its ∆G<0 at P=const, T =const (∆G = G2 –G1). The spontaneous transfering of the system from initial state(G1) to the final state (G2) is possible if G1>G2 (∆G<0). If G2=G1 (∆G=0), the system exists in equilibrium. The Gibbs’s free energy is connected with enthalpy and entropy: ∆G = ∆H - T∙∆S , the second law of termodynamics. The calculations of ∆G, ∆H, ∆S are done under the standard conditions: P = 101,3 kPa; T = 2980K. Ability of the substances to react with each other or chemical affinity is defined by the change of Gibb’s energy. The more negative value of ∆G is the higher the reaction ability of the substance will be. The analysis of the relationship ∆G = ∆H - T∙∆S shows: 1) if ∆H <0 and ∆S >0, ∆G <0 at any temperatures 2) if ∆H <0 and ∆S <0, ∆G <0 at temperatures low enough, i.e. │∆H│>│ T∙∆S │ 3) if ∆H >0 and ∆S >0, ∆G <0 at temperatures high enough, i.e. │ T∙∆S │>│∆H│; 4) if ∆H >0 and ∆S <0, ∆G >0 at any temperatures.
|
||||
Последнее изменение этой страницы: 2020-12-17; просмотров: 124; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.115.43 (0.009 с.) |