Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Подсистема управления и обслуживанияСодержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Подсистема управления и обслуживания - это совокупность аппаратно-программных средств, предназначенных для обеспечения максимальной производительности, заданной надежности, ремонтопригодности, удобства настройки и эксплуатации. Она обеспечивает проблемную ориентацию и заданное время наработки на отказ, подготовку и накопление статистических сведений о загрузке и прохождении вычислительного процесса, выполняет функции "интеллектуального" интерфейса с различными категориями обслуживающего персонала, осуществляет инициализацию, тестирование и отладку. Подсистема управления и обслуживания позволяет поднять на качественно новый уровень эксплуатацию современных ЭВМ. При разработке структуры ЭВМ все подсистемы должны быть сбалансированы между собой. Только оптимальное согласование быстродействия обрабатывающей подсистемы с объемами и скоростью передачи информации подсистемы памяти, с пропускной способностью подсистемы ввода-вывода позволяет добиться максимальной эффективности использования ЭВМ.
Архитектуры ЭВМ Под архитектурой ЭВМ понимается функциональная и структурная организация машины, определяющая методы кодирования данных, состав, назначение, принципы взаимодействия технических средств и программного обеспечения. Можно выделить следующие важные для пользователя группы характеристик ЭВМ, определяющих её архитектуру: 1) характеристики и состав модулей базовой конфигурации ЭВМ; 2) характеристики машинного языка и системы команд (количество и номенклатура команд, их форматы, системы адресации, наличие программно-доступных регистров в процессоре и т.п.), которые определяют алгоритмические возможности процессора ЭВМ; 3) технические и эксплуатационные характеристики ЭВМ; 4) состав программного обеспечения ЭВМ и принципы его взаимодействия с техническими средствами ЭВМ. К наиболее общему принципу классификации ЭВМ и систем по типам архитектуры следует отнести разбиение их на однопроцессорные и многопроцессорные архитектуры (см. рис.2.1). Исторически первыми появились однопроцессорные архитектуры. Классическим примером однопроцессорной архитектуры является архитектура фон Неймана со строго последовательным выполнением команд: процессор по очереди выбирает команды программы и также по очереди обрабатывает данные (программа и данные хранятся в единственной последовательно адресуемой памяти).
Рис. 2.1. Архитектуры ЭВМ По мере развития вычислительной техники архитектура фон Неймана обогатилась сначала конвейером команд, а затем многофункциональной обработкой, и по таксономии* М.Флина получила обобщенное название компьютера с одним потоком команд и одним потоком данных. Поток команд - это последовательность команд, выполняемых ЭВМ (системой), а поток данных - последовательность данных (исходная информация и промежуточные результаты решения задачи), обрабатываемых под управлением потока команд.
SISD-компьютеры
Рис. 2.2. SISD- архитектура
SISD (Single Instruction Single Data) или ОКОД - один поток команд, один поток данных. SISD компьютеры это обычные, "традиционные" последовательные компьютеры, в которых в каждый момент времени выполняется лишь одна операция над одним элементом данных (числовым или каким-либо другим значением). При работе такой системы в мультипрограммном режиме, когда совместно решаются несколько задач (программы и исходные данные по каждой из них хранятся в оперативной памяти), обеспечивается параллельная работа устройств системы, происходит разделение времени и оборудования между совместно выполняемыми программами. Но в каждый данный момент операционное устройство (АЛУ), поскольку оно является единственным, занимается обработкой информации по какой-то одной команде, т. е. одновременное преобразование информации в АЛУ по нескольким командам, принадлежащим разным участкам одной и той же программы или разным программам, невозможно. Основная масса современных ЭВМ функционирует в соответствии с принципом фон Неймана и имеет архитектуру класса SISD. Данная архитектура породила CISC, RISC и архитектуру с суперскалярной обработкой.
|
||||
Последнее изменение этой страницы: 2016-04-08; просмотров: 847; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.137.174.253 (0.006 с.) |