Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Механизмы с высшими кинематическими парами и их классификацияСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
К механизмам с высшими КП относятся любые механизмы в состав которых входит хотя бы одна высшая пара. Простейший типовой механизм с высшей парой состоит из двух подвижных звеньев, образующих между собой высшую кинематическую пару, а со стойкой низшие (вращательные или поступательные) пары. К простейшим механизмам с высшей парой относятся: фрикционные передачи (рис. 2.10), зубчатые передачи (рис. 2.8), кулачковые механизмы (рис. 2.2), поводковые механизмы (в том числе и мальтийские - рис. 2.11). Структурные схемы простейших механизмов с высшими кинематическими парами
Кулачковым механизмом называется механизм с высшей парой, ведущее звено которого выполнено в форме замкнутой криволинейной поверхности и называется кулачком (рис. 2.2). Зубчатыми механизмами называются механизмы звенья которых снабжены зубьями. Рабочие поверхности зубьев должны быть выполнены так, чтобы обеспечивать передачу и преобразование движения по заданному закону за счет их зацепления (рис. 2.8). Фрикционными механизмами или передачами сцепления называются механизмы с высшей парой в которых передача движения в высшей паре осуществляется за счет сил сцепления или трения в зоне контакта (рис. 2.10). Условия, которым должны удовлетворять рабочие поверхности высших пар, формулируются в разделе теории механизмов - теории зацепления или теории высшей пары. ОТВЕТ 4) Образование механизмов по Ассуру Л.В. Для решения задач синтеза и анализа сложных рычажных механизмов профессором Петербургского университета Ассуром Л.В. была предложена оригинальная структурная классификация. По этой классификации любой рычажный механизм не имеющий изыточных связей и местных подвижностей может быть образован путём присоединения к начальному (первичному) механизму групп звеньев с нулевой степенью подвижности (групп Ассура (см. рис. 2.12).
Под начальным механизмом понимают механизм, состоящий из двух звеньев (одно из которых неподвижное – стойка) образующих кинематическую пару с одной Wпм=1 или несколькими Wпм>1 подвижностями. Примеры начальных механизмов даны на рис. 2.13.
Структурной группой Ассура (или группой нулевой подвижности) называется кинематическая цепь, образованная только подвижными звеньями механизма, подвижность которой (на плоскости и в пространстве) равна нулю (Wгр = 0). Для плоских механизмов с низшими парами структурная формула групп Ассура имеет вид: W = 3 · n - 2 · p5= 0, откуда Поскольку в группе не может быть дробное число кинематических пар, то группы Ассура должны состоять только из четного числа звеньев (табл. 2.6).
Чтобы из механизма выделить группы Ассура, необходимо помнить их основные признаки, вытекающие из определения: * число звеньев в группе должно быть четным (n = 2, 4, 6 и т.д.); * степень подвижности группы всегда равна нулю, например, группа 3-го класса 3-го порядка (рис. 2.14, ж) содержит n = 4, p5= 6; при этом W = 3·4 - 2·6 = 0; * степень подвижности оставшейся части механизма при отсоединении групп Ассура не должна изменяться. Группа Ассура характеризуется классом, порядком и видом. Класс группы Ассура определяется максимальным классом контура входящего в группу. Класс контура – наибольшее число кинематических пар образующих в группе замкнутый контур. Если группа Ассура образована двумя звеньями ей в качестве исключения присваивается 2 – й класс. Порядок группы Ассура определяется числом кинематических пар, которыми она присоединяется к основному механизму. Вид группы Ассура (её характеристика) определяется соотношением входящих в неё вращательных и поступательных кинематических пар. Поводком называется звено, входящее в группе в две кинематические пары, одна из которых свободная и служит для присоединения к одному из подвижных звеньев механизма или к стойке. Порядок структурных групп определяется числом поводков. Механизмы классифицируются по степени сложности групп входящих в их состав. Класс и порядок механизма определяется классом и порядком наиболее сложной из входящих в него групп. Особенность структурных групп Ассура - их статическая определимость. Если группу Ассура свободными элементами звеньев присоединить к стойке, то образуется статически определимая конструкция. Используя группы Ассура удобно проводить структурный, кинематический и силовой анализ механизмов. Наиболее широко применяются простые рычажные механизмы, состоящие из групп Ассура 2-го класса 2-го порядка. Число разновидностей таких групп для плоских механизмов с низшими парами невелико, их всего пять (см. рис. 2.14 б, в, г, д,е) При структурном синтезе механизма по Ассуру (рис.2.12) к выбранным первичным механизмам с заданной подвижностью W0 последовательно присоединяются структурные группы c нулевой подвижностью. Полученный таким образом механизм обладает рациональной структурой, т.е. не содержит избыточных связей и подвижностей.
|
||||||||||||||||||||||||||||||||
Последнее изменение этой страницы: 2016-04-06; просмотров: 853; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.93.227 (0.007 с.) |