Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Экстремум функции двух переменных. Необходимое и достаточное условие всех первообразных.Содержание книги
Поиск на нашем сайте
Пусть функция z=f(x,y) определена в некоторой области D, точка N0(x0;y0) D. Точка N0(x0;y0) называется точкой максимума функции z=f(x,y), если существует δ - окрестность точки N0(x0;y0), что для каждой точки (x,y), отличной от N0(x0;y0), из этой окрестности выполняется неравенство f(x,y)0;y0). Аналогично определяется точка минимума функции, т.е. если выполняется неравенство f(x,y)>f(x0;y0), то N0(x0;y0) - точка минимума. Значение функции в точке максимума (минимума) называется максимумом (минимумом) функции. Максимум и минимум функции называют ее экстремумом. Теорема 1 (необходимые условия экстремума). Если в точке N0(x0;y0) дифференцируемая функция z=f(x,y) имеет экстремум, то ее частные производные в этой точке равны нулю: f'x(x0;y0)=0, f'y=(x0;y0)=0.
Вопрос 10 Определение первообразной. Теорема о множестве всех первообразных. f(x) - называется подынтегральной функцией; f(x)dx - называется подынтегральным выражением;
Вопрос 11 Неопределенный интеграл и его свойства. , . В самом деле, пусть , где j/(х) - непрерывна. Тогда j(х) очевидно является первообразной для j/(х). Поэтому . Ecли k = const, тогда
Вопрос 12 Метод непосредственного интегрирования. Вопрос 13 Метод замены переменной. Пусть тpебyетcя вычислить интеграл Сделаем подстановку Вопрос 14 Интегрирование по частям. Полученная формула называется формулой интегрирования по частям. Она дает возможность свести вычисление интеграла к вычислению интеграла , который может оказаться существенно более простым, чем исходный. Интегрирование по частям состоит в том, что подынтегральное выражение заданного интеграла представляется каким-либо обpaзoм в виде произведения двух сомножителей и и dv (это, как правило, можно осуществить несколькими cспособами); затем, после нахождения ν и du, используется формула интегрирования по частям. Иногда эту формулу приходится использовать несколько раз. 2.Интегралы вида Удобно положить Р(х)dx=dv, а за u обозначить остальные сомножители. 3. Интегралы вида, где а и b - числа. За и можно принять функцию=еα х.
|
||||
Последнее изменение этой страницы: 2016-04-07; просмотров: 267; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.133.108.47 (0.013 с.) |