Аудиограмма. Аудиометрия. Графики, пояснения, применения в медицине 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Аудиограмма. Аудиометрия. Графики, пояснения, применения в медицине



Вопрос№2

Закон Вебера-Фехнера
ё(син.: Вебера — Фехнера закон, Фехнера закон) — закон, устанавливающий связь между силой раздражения какого-либо органа чувств и интенсивностью ощущения; при средних значениях интенсивности раздражителя интенсивность ощущения прямо пропорциональна натуральному логарифму силы раздражителя.

Закон Вебера — Фехнера — эмпирический психофизиологический закон, заключающийся в том, что интенсивность ощущенияпропорциональна логарифму интенсивности стимула.

В ряде экспериментов, начиная с 1834 года, Э. Вебер показал, что новый раздражитель, чтобы отличаться по ощущениям от предыдущего, должен отличаться от исходного на величину, пропорциональную исходному раздражителю. Так, чтобы два предмета воспринимались как различные по весу, их вес должен различаться на 1/30, а не на x грамм. Для различения двух источников света по яркости необходимо, чтобы их яркость отличалась на 1/100, а не на x люмен и т. д.

На основе этих наблюдений Г. Фехнер в 1860 году сформулировал «основной психофизический закон», по которому сила ощущения p пропорциональна логарифму интенсивности раздражителя S:

где S — значение интенсивности раздражителя. S 0 — нижнее граничное значение интенсивности раздражителя: если S < S 0, раздражитель совсем не ощущается. k - константа, зависящая от субъекта ощущения.

Так, люстра, в которой 8 лампочек, кажется нам настолько же ярче люстры из 4-х лампочек, насколько люстра из 4-х лампочек ярче люстры из 2-х лампочек. То есть количество лампочек должно увеличиваться в одинаковое число раз, чтобы нам казалось, что прирост яркости постоянен. И наоборот, если абсолютный прирост яркости (разница в яркости «после» и «до») постоянен, то нам будет казаться, что абсолютный прирост уменьшается по мере роста самого значения яркости. Например, если добавить одну лампочку к люстре из двух лампочек, то кажущийся прирост в яркости будет значительным. Если же добавить одну лампочку к люстре из 12 лампочек, то мы практически не заметим прироста яркости.

Можно сказать и так: отношение минимального приращения силы раздражителя, впервые вызывающего новые ощущения, к исходной величине раздражителя есть величина постоянная.

Закон Вебера — Фехнера можно объяснить тем, что константы скорости химических реакций, проходящих при рецептировании, нелинейно зависят от концентрации химических посредников физических раздражителей или собственно химических раздражителей

Аудиограмма. Аудиометрия. Графики, пояснения, применения в медицине

Метод измерения остроты слуха называют аудиометрией. При аудиометрии на аудиометре определяют порог слухового ощущения на разных частотах. Полученная кривая называется аудиограммой.

Аудиограмма - это график, отображающий состояние слуха человека.

По горизонтальной оси откладываются частоты (от 125 до 8000 Гц), а по вертикальной – пороги слышимости на соответствующих частотах, т.е. минимальные уровни звукового давления сигнала, при которых пациент слышит звук. При построении аудиограммы значения этих порогов измеряются специальным прибором – аудиометром.

По характеру данного графика можно судить о нарушениях органа слуха и методах и их коррекции.

Что такое кривая порога слышимости?

Кривой порога слышимости называют график зависимости (минимальной) интенсивности звука, способного создать слуховое ощущение от частоты этого звука. Этот график приведен на рисунке в пункте 11. Как и кривые одинаковой громкости они имеют провал - минимум на частотах 1000 - 4000 Гц, что указывает на то, что наше ухо наиболее чувствительно именно к этим частотам.

Вопрос №4. Инфразвук – акустические волны с частотой колебаний меньше 16Гц. Одним из самых важных свойств инфразвука является его способность распространяться на большие расстояния в различных средах: в воздухе, воде, земной коре. Воздействие инфразвука происходит не только через слуховой анализатор, но и через механорецепторы кожи. Возникающие нервные импульсы нарушают согласованную работу различных отделов нервной системы, что может проявляться головокружением, болями в животе, тошнотой, затрудненным дыханием, чувством страха, при более интенсивном и продолжительном воздействии - кашлем, удушьем, нарушением психики.

Поражающее действие инфразвука зависит от его силы и интенсивности.

Инфразвуковые колебания небольшой интенсивности вызывают тошноту и звон в ушах, уменьшают остроту зрения. Нарушения, связанные с расстройствами зрительного аппарата проявляются отличием друг от друга картин, создаваемых левым и правым глазом, начинает «ломаться» горизонт. При длительном воздействии возникают проблемы с ориентацией в пространстве и в редких случаях слепота.

Колебания средней интенсивности могут стать причиной расстройства пищеварения, сердечнососудистой, дыхательной систем, нарушения психики с самыми неожиданными последствиями.

Инфразвук высокой интенсивности (частотой 7 Гц и выше), влекущий за собой резонанс, приводит к нарушению работы практически всех внутренних органов, к кровотечению из ушей и носа. Также возможен смертельный исход из-за остановки сердца, или разрыва кровеносных сосудов.

Вопрос № 5. Ультразвук.

Ультразвуком называют продольные механические волны с частотами колебаний выше 20 КГц. В каждой среде скорость распространения, как звука, так и ультразвука – одинакова. Длина ультразвуковых волн в воздухе меньше чем 17 мМ

Источниками ультразвука являются специальные электромеханические излучатели. Один тип излучателей работают на основе явления магнитострикции, когда в переменном магнитном поле изменяются размеры некоторых тел (например, никелевого стержня). Такие излучатели позволяют получить колебания с частотами от 20 до 80 КГц.

Второй тип излучателей работает на основе пьезоэффекта, когда в переменном электрическом поле изменяются размеры некоторых тел. Для этого типа излучателей можно получать более высокочастотные колебания – до 500 МГц.

Особенности ультразвука.

В каждой среде скорость распространения звука и ультразвука – одинакова. Наиболее важной особенностью ультразвука является узость ультразвукового пучка, что позволяет воздействовать на какие-либо объекты локально. В неоднородных средах с мелкими включениями частиц, когда размеры включений примерно равны, но больше длины волны (L=λ) имеет место явление дифракции. Если размеры включений много больше длины волны имеет место прямолинейность распространения ультразвука. В этом случае можно получать ультразвуковые тени от таких включений, что используется при разл видах диагностики технической и медицинской. Важным теоретическим моментом при использовании ультразвука является прохождение ультразвука из одной среды в другую.

Частота при этом не изменяется. Скорость и длина волны при этом могут изменяться.

Проникновение УВ в другую среду характеризуется коэффициентом проникновения. Он определяется как отношение интенсивности волны попавшей во вторую среду к интенсивности, попавшей волны:

Этот коэффициент зависит от соотношения акустического импеданса двух сред.

Акустическим импедансом называют произведение плотности среды на скорость распространения волн в данной среде:

Коэф. Проникновения наибольший- близкий к 1, если акустический импеданс двух сред примерно равны.

Если импеданс второй среды больше, чем первой, то коэф. проникновения ничтожно мал. В однородных средах ультразвук поглощается по закону показательной функции.

Воздействие УВ на организм.

Три вида действия УВ:

- механическое

- тепловое

- химическое

Все три вида воздействия УВ на организм связано с явлением кавитации- это кратковременные возникновения микро полостей в местах разряжения волны.

УВ ускоряет протекание процессов диффузии и растворения, оказывает влияние на скорость химических реакций. УВ большой мощности вызывает гибель вирусов и бактерий. При малой мощности увеличивается проницаемость клеточных мембран и активизируются процессы обмена в тканях. Способность УВ волн оказывать механическое и тепловое действие на ткани лежит в основе УВ физиотерапии.

Локационные методы:

- эхоэнцефалография(определение опухолей и отека головного мозга)

-ультразвуковая кардиография (измерение размеров сердца в динамике)

-ультразвуковая локация (в офтальмологии).

Теменной метод основан на регистрации интенсивности УВ, прошедшего через исследуемый объект. В хирургии для резки костной ткани применяют УВ скальпель.

Вопрос 7,8.

Медицинская вискозиметрия. Примеры работы вискозиметра

Вискозиметрия-совокупность методов измерения вязкости, с помощью прибора вискозиметра.

Методы вискозиметрии.

Капилярный метод(измеряем время протекания через капилляр жидкости)основан на формуле Пуазейля.(см.в методичке Лютова)

Заключается в том, что измеряется время протекания через капилляр жидкости или (газа) за определенное время t через трубку длиной L и разностью давлений р на концах трубки.

Метод выполняется только для ламинарного течения(слои жидкости текут не перемешиваясь).

Мед.вискозиметр

Применяется для определения вязкости крови.Принцип его действия основан на том,что V передвижения в капиллярах при равных температурах и давлениях зависят от вязкости этих жидкостей.(рис.методичка С.И.Лютова)

А1 и А2-градуированные капилляры

А1-в него набирают определенный объем дистиллированной воды до 0(эталонная жидкость)

А2-кровь(исследуемая жидкость)до 0

Б-кран его перекрывают перед тем,как налить в А2 исследуемую жидкость.После его открывают и в А2 и А1 жидкости перемещаются.

Какая жидкость перемещается быстрее,там меньше вязкость.

Вязкость крови человека в норме-4-5 мПа.

Патология 1,7-22,9мПа(связано со скоростью оседания эритроцитов).

1.Поверхностное натяжение-определяется отношением работы,затраченной на создание поверхностного слоя жидкости при постоянной температуре, к площади этой поверхности.

2.Поверхностное натяжение-равно отношению силы поверхностного натяжения к длине отрезка, на котором действует эта сила.

Условие равновесия жидкостей(мин.энергия поверхностного слоя):жидкость всегда стремится иметь минимальную площадь и принимает форму шара.

Пов. натяжения зависит от те мпературы. Если добавить в жидкость ПАВ(поверхностно-активные в-ва) будет снижение пов. натяжения(уменьшение энергии поверхностного слоя).

Капиллярные явления.

Определяют условия конденсации паров, кипения жидкостей, кристализации и т.д.

Под действием сил поверхностного натяжения поверхностный слой жидкости искривлен и оказывает давление р.

Искривление поверхности(мениск) возникает в капиллярных трубках в результате смачивания или не смачивания их поверхности.

При смачивании образуется вогнутый мениск.При несмачивании-выпуклый.

Силы давления направлены от жидкости наружу(вверх)и происходит подъем жидкости в капилляре.(когда рgh уравновешивает р-давление)

Высота поднятия жидкости в капилляре зависит от капилляра и его радиуса.

Газовая и жировая эмболия

Эмболия-явление закупорки сосуда пузырьком воздуха(каплей жира),чреватое лишением кровоснабжения какого-либо сосуда или органа.

Газовая эмболия возникает при:

-порезах крупных вен(там большое давление) и происходит закупорка.

-при подключении капельницы в крупную вену (как правило, подключичную) при отсутствии жидкости в сосуде и подключенному к нему катетору.

При течении пузырька с кровью,передняя часть пузырька вытягивается,задняя сплющивается.В задней части Р1 меньше,чем Р2.Добавочное давление Р приводит к закупорке сосуда.

При жировой эмболии процессы теже самые.Она возникает при переломах костей,кода капельки жира проникают в сосуды.Затем после этого возникает тромбоэмболия(возникновение тромба в сосуде)

 

9. Тоны Короткова. Физические основы проведения неинвазивного метода Короткова для измерения систолического и диастолического давлений.

Метод Короткова – бескровный метод измерения систолического и диастолического давления крови в плечевой артерии.

Тоны Короткова - звуки, которые слышны с помощью фонендоскопа, помещенного на лучевой артерии, при нагнетании воздуха в манжетку и его постепенном выпускании.

Систолическое (верхнее) артериальное давление — это уровень давления крови в момент максимального сокращения сердца.

Диастолическое (нижнее) артериальное давление — это уровень давления крови в момент максимального расслабления сердца.

Метод Короткова предусматривает для измерения артериального давления очень простой тонометр, состоящий из

механического манометра, манжеты с грушей и фонендоскопа. Метод основан на полном пережатии манжетой плечевой артерии и выслушивании тонов, возникающих при медленном выпускании воздуха из манжеты.

Если мускулатура расслаблена, то давление воздуха внутри манжеты, состоящей из эластичных стенок, приблизительно равно давлению в мягких тканях, соприкасающихся с манжетой – основная идея бескровного метода Короткова.

 

Сначала избыточное над атмосферным давление воздуха в манжете равно нулю, манжета не сжимает руку и артерию. По мере накачивания воздуха в манжету последняя сдавливает плечевую артерию и прекращает ток крови. Выпуская воздух, уменьшают давление в манжете и в мягких тканях, с которыми она соприкасается. Когда давление станет равным систолическому, кровь будет способна пробиться через сдавленную артерию – возникает турбулентное течение. Этот процесс сопровождают характерные тоны и шумы (тоны Короткова). Продолжая уменьшать давление в манжете, можно восстановить ламинарное течение крови – резкое ослабление прослушиваемых тонов – диастолическое давление.

Вопрос№11

Вопрос №12

Перенос нейтральных частиц через мембраны. Уравнение простой диффузии.

Пассивный транспорт(направление в сторону переноса уменьшения концентрации)

1) Простая диффузия- перенос веществ из-за разности концентраций. Осуществляется через липидный слой, липидную пору, через белковую пору, также возможен осмос. Происходит выравнивание концентраций

2) Облегченная диффузия- протекает с подвижным или неподвижным переносчиком

3) Фильтрация – перемещения раствора или растворителя под разностью давлений(перенос воды через стенки капилляров) Явление подчиняется формуле Пуазейля Q= дельта P/ W, де Q –объемная скорость, дельта P- разность давлений, W –гидравлическое сопротивление

Уравнение диффузии:

Говоря о любом виде транспорта веществ используют понятие плотности потока переносимого вещества Ф, определяемого как число перенесенных частиц ко времени и площади, через которую этот перенос осуществляется Ф= N/(дельтаt*S)

Уравнение, описывающее процесс диффузии имеет вид(Уравнение Фика):

Ф=- D* дельта C/ дельта X, отношение дельта C/ дельта X называется градиентом концентрации, D –коэффицент диффузии

Так как диффузия-результат теплового движения молекул, коэффицент диффузии можно выразить через молекулярные характеристики-среднюю скорость молекулы (V) и среднюю длину сводного пробега молекул (л –лямбда) D=(1/3)*V*л

Для биомембран используют упрощенное уравнение Фика Ф=p(c1-c2)

C1 и С2 концентрации веществ внутри и внее клетки, P=D*K/дельта Х-проницаемость мембраны

Диффузия через поры:

Этот вид диффузии для липидо-нерастворимых веществ, водо-растворимых ионов

Облегченная диффузия:

Этим путем переносятся аминокислоты, сахара, ионы калия. Происходит с участием молекулы переносчика. Например, молекула ВАЛИНОМИЦИНА

Для облегченной диффузии характерны 4 особенности:

1) Коэффицент проницаемости для облегченной диффузии больше, чем для простой

2) Процесс обладает свойством насыщения

3) Наличие конкуренции переносимых веществ

4) Наличие веществ-блокираторов

Вопрос № 13

Перенос ионов через мембраны: электродиффузия, облегченная диффузия и Активный транспорт.

Уравнение Нернста-Планка: .

Поток, обусловленный разностью концентраций(ФΔС): - D *

Поток, обусловленный разностью потенциалов(ФΔ :

Z – валентность электронов.

C – молярная концентрация.

U – подвижность ионов. U=V упор.движ.чатиц /F.

F – число Фарадея (F=96500 Кл/Моль)

 

Вопрос № 14

Виды пассивного транспорта нейтральных и заряженных частиц через мембраны.

Пассивный транспорт (направление переноса в сторону уменьшения концентраций):

Простая диффузия – перенос вещества вследствие разности концентраций. Она может осуществляться через липидный слой, через липидную пору, через белковую пору. При это возможен также осмос – диффузия не растворенных частиц и растворителя от точек с меньшей концентрацией некоторого вещества к точкам с большей его концентрацией.

Плотность потока переносимого вещества – Ф, определяется как число перенесенных частиц ко времени и площади,через которую этот перенос осуществляется: Ф = m/ (Δt*S). Кроме того можно определить плотность через перенесенную массу: Фm = m/ (Δt*S) или количество вещества: Ф = ʋ/ (Δt*S). Уравнение, описывающее процесс диффузии(уравнение Фикса): .

- градиент концентрации.

D – коэффициент диффузии.

Фильтрация – перемещение раствора (и растворителя) под действием разности давлений. Этот вид переноса имеет основное значение при переносе воды через стенки капилляров. Явление подчиняется формуле Пуазейля Q= Δp/w, где Q - объемная скорость, Δp – разность давлений, w – гидравлическое сопротивление.

Облегченная диффузия может протекать с подвижным либо с неподвижным переносчиком.

Этим путем через мембраны переносятся аминокислоты, сахара, ионы калия. Облегченная диффузия происходит с участием молекулы переносчика. Например, молекула ВАЛИНОМИЦИНА, хорошо растворимая в липидах, имеет высокий коэффициент проницаемости. Внутри молекулы валиномицина имеются как бы полости с полярными группами, что позволяет молекуле захватывать и связывать ионы калия и другие липидонерастворимые вещества. Переносимое вещество(ионы калия) захватывается молекулой переносчиком там, где его больше и переносится туда, где его меньше, то есть перенос как и при обычной диффузии.

4 особенности облегченной диффузии:

1) Коэффициент проницаемости для облегченной диффузии больше, чем для простой.

2) Процесс облегченной диффузии обладает свойством насыщения.

3) Наличие конкуренции переносимых веществ. Ряд наиболее переносимых веществ: глюкоза > фруктоза > ксилоза > арабиноза.

4) Наличие веществ-блокираторов (напр. Флоридзин).

Электродиффузия – перенос не нейтральных молекул, а заряженных частиц(ионов) вследствие как разности концентраций, так и разности потенциалов.(Лютов с.94-95)

Диффузия через поры этот вид диффузии имеет место для липидо-нерастворимых веществ, водорастворимых гидратированных ионов. Чем больше диаметр молекулы или иона, тем проницаемость меньше (искл. Составляют ионы лития и натрия- их диаметр меньше, чем диаметр иона калия, но проницаемость меньше в 50-100 раз).

Вопрос.

Потенциа́л поко́я (ПП) - мембранный потенциал возбудимой клетки в невозбужденном состоянии. Он представляет собой разность электрических потенциалов, имеющихся на внутренней и наружной сторонах мембраны и составляет у теплокровных от -55 до -100 мВ[1]. У нейронов и нервных волокон обычно составляет -70 мВ. Измеряется изнутри клетки.

Для того, чтобы на мембране поддерживалась разность потенциалов, необходимо, чтобы была определенная разность концентрации различных ионов внутри и снаружи клетки.

Итак, мембранный потенциал покоя - это дефицит положительных электрических зарядов внутри клетки, возникающий за счёт утечки из неё положительных ионов калия и электрогенного действия натрий-калиевого насоса.

Вопрос.

Эле́ктрокардиогра́фия — методика регистрации и исследования электрических полей, образующихся при работе сердца. Электрокардиография представляет собой относительно недорогой, но ценный метод электрофизиологической инструментальной диагностики в кардиологии.

Прямым результатом электрокардиографии является получение электрокардиограммы (ЭКГ) — графического представления разности потенциалов возникающих в результате работы сердца и проводящихся на поверхность тела. На ЭКГ отражается усреднение всех векторов потенциалов действия, возникающих в определённый момент работы сердца.

Прибор

Первые электрокардиографы вели запись на фотоплёнке, затем появились чернильные самописцы, теперь, как правило, электрокардиограмма записывается на термобумаге. Полностью электронные приборы позволяют сохранять ЭКГ в компьютере. Скорость движения бумаги составляет обычно 25 мм/с. В некоторых случаях скорость движения бумаги устанавливают на 12,5 мм/с, 50 мм/с или 100 мм/с. В начале каждой записи регистрируется контрольный милливольт. Обычно его амплитуда составляет 10 мм/мВ. Медицинские приборы имеют определенные метрологические характеристики, обеспечивающие воспроизводимость и сопоставимость измерений электрической активности сердца[1].

Электроды

Для измерения разности потенциалов на различные участки тела накладываются электроды. Так как плохой электрический контакт между кожей и электродами создает помехи, то для обеспечения проводимости, на участки кожи в местах контакта наносят токопроводящий гель. Ранее использовались марлевые салфетки, смоченные солевым раствором.

Фильтры

Применяемые в современных электрокардиографах фильтры сигнала позволяют получать более высокое качество электрокардиограммы, внося при этом некоторые искажения в форму полученного сигнала. Низкочастотные фильтры 0,5-1 Гц позволяют уменьшать эффект плавающей изолинии, внося при этом искажения в форму сегмента ST. Режекторный фильтр 50-60 Гц нивелирует сетевые наводки. Антитреморный фильтр низкой частоты (35 Гц) подавляет артефакты, связанные с активностью мышц.

Нормальная ЭКГ

Соответствие участков ЭКГ с соответствующей фазой работы сердца

Обычно на ЭКГ можно выделить 5 зубцов: P, Q, R, S, T. Иногда можно увидеть малозаметную волну U. Зубец P отображает работу предсердий, комплекс QRS — систолу желудочков, а сегмент ST и зубец T — процесс реполяризации миокарда.

Отведения

Каждая из измеряемых разниц потенциалов называется отведением. Отведения I, II и III накладываются на конечности: I — правая рука — левая рука, II — правая рука — левая нога, III — левая рука — левая нога. С электрода на правой ноге показания не регистрируются, он используется только для заземления пациента.

Регистрируют также усиленные отведения от конечностей: aVR, aVL, aVF — однополюсные отведения, они измеряются относительно усреднённого потенциала всех трёх электродов. Заметим, что среди шести сигналов I, II, III, aVR, aVL, aVF только два являются линейно независимыми, то есть сигнал в каждом из этих отведений можно найти, зная сигналы только в каких-либо двух отведениях.

При однополюсном отведении регистрирующий электрод определяет разность потенциалов между конкретной точкой электрического поля (к которой он подведён) и гипотетическим электрическим нулём. Однополюсные грудные отведения обозначаются буквой V.

 

Эквивалентный электрический генератор, - это модельный генератор, более или менее близкий к истинному по конфигурации и удовлетворяющий критериям эквивалентности (они обычно сводятся к равенству полей в области измерения или же равенству собственных интегральных характеристик истинного и эквивалентного генераторов).

Понятие эквивалентного электрического генератора тесно связано с формулированием и решением двух фундаментальных электродинамических задач - прямой и обратной, возникающих при исследовании биоэлектрического и биомагнитного полей. Основываясь на соотношениях электродинамики и конкретных условиях неинвазивных биоэлектромагнитных измерений, в качестве прямой задачи рассматривается определение электрического и (или) магнитного полей в области измерения по заданным характеристикам генератора (плотности стороннего тока или ее возбудителям - источникам и вихрям); в качестве обратной задачи - определение генератора по измеренным характеристикам электрического и (или) магнитного полей (их потенциалам или напряженностям).

Под генератором, как правило, понимается не истинный биоэлектрический генератор. Понятие эквивалентного генератора особенно актуально в применении к обратной задаче, так как обратная задача, в отличие от прямой, в общем случае не может быть решена однозначно без наложения довольно жестких ограничений на структуру генератора. Это объясняется тем, что существуют конфигурации генератора, не создающие электрического и магнитного полей во внешней по отношению к генератору области.

 

Частота зависимости порогов ощутимого и неотпускающего токов. Характеристики пассивных электрических свойств тканей тела человека. Первичное действие постоянным током и переменными электрическими токами на организм.

При действии на живые ткани переменными электрическими полями и токами возможны два вида реакции – раздражающее действие и тепловое.

Раздражающее действие - частоты не более 500 КГц.

Тепловое действие проявляется всегда.

В состоянии покоя каждая клетка электрически заряжена: наружная сторона мембраны имеет положительный заряд, внутренняя – отрицательный. Для каждой клетки существует мембранный потенциал покоя (-70 мВ). Мембраны имеют большую проницаемость для калия и практически непроницаемы для ионов натрия. Калий переходит наружу, тем самым создавая разность потенциалов.

Для возникновения возбуждения клетки необходима деполяризация мембраны – уменьшение клеточного потенциала до критического уровня. Это может быть вызвано:

-внеклкточным раздражением постоянным током (уменьшение мембранного потенциала)

- внутриклеточным раздражением постоянным током (уменьшение мембранного потенциала)

- переменным током

В тканях имеют место быть 2 вида токов:

- Токи смещения.

- Токи проводимости.

При низких частотах преобладают токи проводимости. Чем больше частоты, тем меньше период этого тока и на меньшие расстояния смешаются ионы.

Возбуждение может фиксироваться как на клеточном уровне, так и на макроскопическом. Характеристикой возбуждения называют график зависимости амплитуды импульса тока, вызывающего возбуждение клетки от длительности имульса.

 

 

Iм=k/t + b

На макроскопическом уровне порогом ощутимого тока называют наименьшую силу тока, раздражающее действие которого ощущает человек. Эта величина зависит от места и площади контакта тела с подведенным напряжением.

 
 
 
При увеличении силы тока можно вызвать такое сгибание сустава, при котором человек не сможет самостоятельно разжать руку и освободиться от проводника – источника напряжения. Минимальное значение этого тока называют порогом не отпускающего тока. Токи меньшей силы являются отпускающими.

Импульсные токи различной формы, частоты, амплитуды используются для:

- Стимуляции нервно-мышечной системы

- Кардиостимуляции

- Дефибрилляции сердца

- Электросна

- Электронаркоза

- Электролечения

- электрохирургии.

Электротерпия постоянным током:

Гальванизация – вызывание изменения концентраций ионов в клетках и тканях.

Электрофорез – введение в ткани различных лекарств, с помощью постоянного тока.

Электротерапия импульсным током низкой частоты до 1000 Гц – принудительное возбуждение мышц. (в мышцах не накапливается молочная кислота)

Электротерапия током средней частоты от 2 до 20 КГц, который может быть модулирован током низкой частоты (до 200 Гц). Такие токи называют интерференционными.

Электротерапия током высокой частоты (30-300 кГц)

Электроиспульсная рефлексотерапия

Порогом ощутимого тока называют наименьшую силу тока, раздражающее действие которого ощущает человек.

Вопрос №23

Инфракрасное излучение или тепловое излучение – это вид распространения тепла и это можно сравнить с теплом от горячей печи, солнца или батареи центрального отопления. Более того, сейчас инфракрасное излучение нашло очень широкое распространение в медицине (инфракрасные бани, стоматология, хирургия…). ИК излучение играет важную роль в теплообмене. Эффект теплового воздействия на организм зависит: от плотности потока, длительности облучения, зоны воздействия, длины волны, которая определяет глубину проникновения излучения в тело человека. Чем выше температура тела, тем больше частота ИК-лучей. Когда человек сидит перед тепловым рефлектором, он нагревается и его тело излучает тепло, если бы человек, нагреваясь, не излучал, то он бы перегрелся и получил тепловой удар. Мы постоянно подвергаемся действию ИК-лучей, это любые нагревательные приборы в повседневной жизни и в этом случае наш организм сам контролирует ситуацию.

ИК-излучение
-Улучшает состояние мышц и суставов и тканей

-ИК-лучи улучшают подвижность суставов и соединительной ткани

-Улучшает кровоснабжение

-Оказывает противовоспалительное и обезболивающее действие

-Оказывает косметическое действие

-Психологическое действие.

Оптические квантовые генераторы (ОКГ, лазеры) - приборы, представляющие собой источник светового излучения совершенно нового типа. В отличие от луча любого известного источника света, несущего в себе электромагнитные волны различной длины, лазерный луч монохроматичен (электромагнитные волны строго одной длины), отличается высокой временной и пространственной когерентностью (все волны генерируются одновременно в одной фазе), узкой направленностью, что обусловливает точную фокусировку в малом объеме. Поэтому плотность мощности лазерного излучения в импульсе может быть огромна.
Биологическое действие лазеров обусловлено двумя основными критериями: 1) физической характеристикой лазера (длина волны излучения лазера, непрерывный или импульсный режим облучения, длительность импульса, скорость повторения импульсов, удельная мощность), 2) абсорбционной характеристикой тканей. Свойства самой биологической структуры (поглощающая, отражающая способность) влияют на эффекты биологического действия лазера.

Действие лазера многогранно - электрическое, фотохимическое; основное действие - тепловое. Наиболее опасны лазеры с большой энергией в импульсе.

Прямой световой монохроматический импульс вызывает в здоровой ткани локальный ожог - коагуляцию белков, местный некроз, резко отграниченный от смежной области, асептическое воспаление с последующим развитием соединительнотканного рубца. При интенсивном облучении - расстройства васкуляризации, кровоизлияния в паренхиматозных органах. При повторных облучениях патологический эффект возрастает. Наиболее чувствительны глаз (роговица и хрусталик фокусируют излучение на сетчатке) и кожа, в особенности пигментированная.

 

Вопрос 24
Свет имеет двойственную природу, с одной стороны это электромагнитная волна(ЭВМ), с другой – поток частиц – фотонов. В ЭВМ колеблются не частицы, а вектора напряженности электрического поля (Е) и индукции магнитного поля (В) в направлениях, перпендикулярно друг другу и по направлению распространения волны Х. Если вектор Е колеблется во всевозможных направлениях, этот свет естественный, если только в одном – поляризованный. Устройство, позволяющее получить поляризованный свет из естественного называется поляризатором (П). Анализатор (А) – тот же поляризатор, необходимый для анализа поляризации.
формула взята из желтой методички, но там опечатка: вместо «альфа» должна стоять «фи»

I(0) – интенсивность света при параллельном расположении осей поляризатора и анализатора. I – интенсивность света, прошедшего через систему П – А или П – П. Косинус фи – косинус угла между осями двух устройств. Некоторые растворы способны поворачивать плоскость колебания поляризованного света. Такие в-ва назвали оптически активными. К ним относятся сахара, аминокислоты и пр. угол поворота (фи) зависит от рода вещества (α), концентрации раствора (С), толщины кюветы(L)
Данное свойство используют для измерения концентраций биологически важных веществ в различных жидкостях. При этом необходимо использовать поляризованный свет. Оптически активные в-ва: лимфа, ликвор, печень и т.д.

Поляриметр.

 

Вопрос №25

Дифракция света на живых клетках

Дифpакцией называется огибание светом пpепятствий. Дифракция тесно связана с явлением интерференции. Если на пути параллельного светового пучка расположено круглое препятствие (круглый диск, шарик или круглое отверстие в непрозрачном экране), то на экране, расположенном на достаточно большом расстоянии от препятствия, появляется дифракционная картина – система чередующихся светлых и темных колец. Если препятствие имеет линейный характер (щель, нить, край экрана), то на экране возникает система параллельных дифракционных полос.
Явление дифракции света объясняется идеей Френеля: каждая точка волнового фронта является источником вторичных волн, причем все вторичные источники когерентны (принцип Гюйгенса - Френеля).

На рис. изображена плоская световая волна, падающая на непрозрачный экран с отверстием. За экраном фронт результирующей волны (огибающая всех вторичных волн) искривляется, в результате чего свет отклоняется от первоначального направления и попадает в область геометрической тени.


Законы геометрической оптики выполняются достаточно точно лишь в том случае, если размеры препятствий на пути распространения света много больше длины световой волны:

Дифракция происходит в том случае, когда размеры препятствий соизмеримы с длиной волны: L ~ Л.

Дифракционная картина, полученная на экране, расположенном за различными преградами, представляет собой результат интерференции: чередование светлых и темных полос (для монохроматического света) и разноцветных полос (для белого света). Дифракционная решетка - оптический прибор, представляющий собой совокупность большого числа очень узких щелей, разделенных непрозрачными промежутками. Число штрихов у хороших дифракционных решеток доходит до нескольких тысяч на 1 мм.



Поделиться:


Последнее изменение этой страницы: 2016-04-07; просмотров: 2258; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.84.32 (0.136 с.)