Диспергирование оптического излучения 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Диспергирование оптического излучения



Излучение, испускаемое источником возбуждения спектров, несет в себе

информацию об элементном составе анализируемого образца. Однако из-

влечь эту информацию можно только после развертывания (диспергирова-

ния) спектра или выделения узкого спектрального диапазона, соответствующего аналитической линии определяемого элемента. В методах атомной оптической спектроскопии для решения этих задач используются светофильтры, монохроматоры и полихроматоры.

4.2.1. Светофильтры

Светофильтры (оптические фильтры) – наиболее доступные устройства

для выделения некоторого заданного участка спектра широкополосного оптического излучения. Наиболее распространенными являются абсорбционные и интерференционные светофильтры. Абсорбционные фильтры (окрашенные стѐкла, плѐнки) изготовляются из компонент, полосы селективного поглощения которых, накладываясь, перекрывают достаточно широкий спектральный диапазон, оставляя свободным некоторый заданный участок спектра, который и образует полосу пропускания данного устройства. Абсорбционные светофильтры обычно имеют спектральные ширины полос пропускания в пределах от 30 до 50 нм, поэтому их разрешающая способность невелика. Принцип действия светофильтров другого типа основан на явлении интерференции.


На рис. 13 показано поперечное сечение интерференционного светофильтра. Для его изготовления на прозрачную пластинку наносят полупрозрачную пленку из отражающего металла, например, из серебра. Пленку покрывают очень тонким слоем прозрачного материала, например, фторида магния, а затем – снова пленкой серебра. Каждая серебряная пленка отражает примерно половину падающего на нее излучения и пропускает остальной его поток. Часть падающего потока повторно отражается слоями серебра, но при каждом отражении некоторое количество излучения выходит наружу. Те выходящие лучи, для которых расстояние между серебряными пленками кратно половине длины волны (k λ /2, где λ – длина волны, k=1, 2, 3...), усиливаются. Потоки излучения других длин волн интерферируют в слое MgF2, поэтому их энергия практически не выходит наружу. Тонкие слои в интерференционных светофильтрах, выпускаемых промышленностью, защищены еще одной прозрачной пластинкой.

Выделяемая интерфернционными светофильтрами полоса длин волн значительно уже, а максимальное пропускание гораздо больше, чем у стеклянных светофильтров. Интерференционные светофильтры пропускают потоки излучения многих порядков (в соответствии со значениями k). Излучение нежелательных порядков можно отсечь при помощи подходящего поглощающего слоя. Длины волн второго и более высоких порядков видимого излучения находятся в УФ-области, поэтому их легко устранить при помощи стеклянных пластинок.

Интерференционные светофильтры используются для выделения аналитического сигнала в методе эмиссионной фотометрии пламени. Недостаток светофильтров заключается в отсутствии возможности перестройки по длинам волн. Поэтому в приборах для спектрального анализа используются более сложные устройства – монохроматоры и полихроматоры.

4.2.2. Монохроматоры

Монохроматор – это спектральный прибор для выделения узких участков

спектра оптического излучения. Монохроматор состоит (рис. 14) из входной щели 1, освещаемой источником излучения, коллиматора 2, диспергирующего элемента 3, фокусирующего объектива 4 и выходной щели 5. Диспергирующий элемент пространственно разделяет лучи разных длин волн l, направляя их под разными углами υ, и в фокальной плоскости объектива 4 образуется спектр – совокупность изображений входной щели в лучах всех длин волн, испускаемых источником. Нужный участок спектра совмещают с выходной щелью поворотом диспергирующего элемента; изменяя ширину щели 5, изменяют спектральную ширину dl выделенного участка.


 

Диспергирующими элементами монохроматора служат дисперсионные призмы и дифракционные решетки. Их угловая дисперсия D = ∆φ/∆λ вместе с фокусным расстоянием f объектива 4 определяют линейную дисперсию l /∆f = Df (∆φ - угловая разность направлений лучей, длины волн которых отличаются на ∆λ; l – расстояние в плоскости выходной щели, разделяющее эти лучи).

До недавнего времени призмы были дешевле решеток в изготовлении, они

обладают большой дисперсией в УФ-области. Однако их дисперсия существенно уменьшается с ростом λ, и для разных областей спектра нужны призмы из разных материалов. Решетки свободны от этих недостатков, имеют постоянную высокую дисперсию во всем оптическом диапазоне и при заданном пределе разрешения позволяют построить монохроматор с существенно большим выходящим световым потоком, чем призменный монохроматор. Основными характеристиками монохроматора являются: предел разрешения dl, т. е. наименьшая разность длин волн, еще различимая в выходном излучении монохроматора, либо его разрешающая способность R, определяемая, как и для любого другого спектрального прибора, отношением λ/dλ.

Объективы монохроматоров (коллиматорный и фокусирующий) могут

быть линзовыми или зеркальными. Зеркальные объективы пригодны в более широком спектральном диапазоне, чем линзовые, и, в отличие от последних, не требуют перефокусировки при переходе от одного выделяемого участка спектра к другому, что особенно удобно для ИК- и УФ-областей спектра.

Из большого количества существующих оптических схем благодаря небольшим габаритам при хороших спектральных характеристиках широкое распространение получили монохроматоры с дифракционной решеткой, изготовленные по схеме Черни – Тернера (рис. 16). Преимущество этой схемы перед монохроматором Эберта заключается в том, что отпадает необходимость в большом вогнутом зеркале 2 (рис. 15), которое заменяется на два зеркала меньшего размера.

4.2.3. Полихроматоры

Полихроматор позволяет проводить одновременное наблюдение многих или даже всех участков спектра, в то время как монохроматоры служат для выделения отдельных узких участков спектра для измерения, а сканирование спектра производится путем поворота диспергирующего элемента или специального зеркала и занимает определенное время.

Полихроматоры бывают двух типов. Первый – это простой монохроматор

с несколькими выходными щелями. Выбор нужных длин волн осуществляется изменением положения щелей в плоскости проецирования спектра. Такой тип полихроматоров используется в приборах, которые называются квантометрами. В квантометре у каждой выходной щели помещают детектор излучения, поэтому можно регистрировать отдельно и одновременно каждый выделенный участок спектра.

Полихроматор, называемый спектрометром, является не чем иным, как монохроматором с несколькими выходными щелями. Практически полихроматор (дословно: устройство, дающее много цветов) представляет собой монохроматор, имеющий входную щель, фокусирующую оптику и диспергирующее устройство.

Ко второму типу полихроматоров относится спектрограф. В спектрографе

отсутствует выходная щель, а вместо этого используется детектор сплошного излучения, такой, как фотографическая пластинка, расположенная в фокальной плоскости. Схема спектрографа изображена на рис. 17. В отличие от спектрометра спектрограф дает непрерывную регистрацию всех участков спектра и поэтому собирает большую информацию за данный промежуток времени. Фактически спектрограф представляет собой спектрометр, обладающий бесконечным числом выходных щелей и детекторов. Однако в спектрографе применяется особый тип детектора, такой, как фотографическая эмульсия, которая способна регистрировать сплошной спектр.

 

 

Значительное распространение в спектрометрах получили полихроматоры, в которых используются вогнутые дифракционные решетки. У вогнутых

решеток штрихи нанесены на вогнутую (обычно сферическую) зеркальную поверхность. Такие решетки выполняют роль как диспергирующей, так и фокусирующей системы, т. е. в отличие от плоских решеток не требуют применения входного и выходного коллиматорных объективов или зеркал. При этом источник света (входная щель) и спектр оказываются расположенными на окружности, диаметр которой равен радиусу кривизны сферической поверхности дифракционной решетки (рис. 18). Этот круг называется кругом Роуланда. В случае вогнутой дифракционной решетки из щели на решетку падает расходящийся пучок света, а после дифракции на штрихах и интерференции когерентных пучков образуются результирующие световые волны, сходящиеся на круге Роуланда, где и располагаются интерференционные максимумы, т. е. спектр.



Поделиться:


Последнее изменение этой страницы: 2017-01-25; просмотров: 465; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.15.219.217 (0.007 с.)