Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Тема: Сравнение групп методом Стьюдента

Поиск

Цель: научиться выявлять достоверность различия между данными двух выборок одной и той же генеральной совокупности.


Теоретические сведения


Метод Стьюдента применяется для сравнения двух выборок, взятых из одной и той же генеральной совокупности, или двух различных состояний одной и той же выборочной совокупности.

При этом могут представиться следующие случаи:

1. По объему:
2.

а) обе группы большие (n>30);

б) обе группы малые ;

в) одна — большая, вторая — малая.

2. По составу:

а) группы с попарно-зависимыми вариантами, когда i-тая варианта первой группы сравнивается с i-той вариантой второй группы ;

б) группы с попарно-независимыми вариантами (можно менять варианты местами внутри группы).

Исходя из таких условий задачи могут быть трех типов:

I. Сравнение двух больших (или одной большой, одной малой) групп с попарно-независимыми вариантами проводится по формулам:

(1),

(2),

где: k — число степеней свободы,

— объем первой выборки,

— объем второй выборки,

— среднее арифметическое 1 группы,

— среднее арифметическое 2 группы,

— ошибка репрезентативности 1 группы,

— ошибка репрезентативности 2 группы.

— критерий Стьюдента, по найденному значению которого определяют доверительную вероятность различия групп.

II. Сравнение двух малых групп с попарно-независимыми вариантами проводится по формулам:

(3)

где обозначения букв те же, что и в первом случае.

III. Сравнение двух малых групп с попарно-зависимыми вариантами:


(4)

или

, (5)

. (6)


Если разность и обозначить через , а разность , т.е

то формула (5) упростится и примет вид:


. (7)


Пример 7.1.

По числу подтягиваний две группы показали следующие результаты:

= 10,0 = 35 = ±1,3

= 14,5 = 40 = ±1,5

Определить достоверность различия этих групп по средним арифметическим.

Решение:

Задача на первый случай, так как группы по объему большие и варианты попарно-независимы. Следовательно, решать нужно по формулам:

,

.

,

k = 35 + 40 - 2 = 73.

По таблице t-критиериев Стьюдента определим доверительную вероятность: 0,95< b <0,99. Итак, различие не случайно. Оно достоверно по I порогу доверительной вероятности.

Пример 7.2.

Результаты лыжных гонок на 15 км (в мин):

Решение:

Задача на I случай, так как одна группа большая, вторая — малая, варианты попарно-независимы. Тогда, по формулам (1) и (2) получим:

,

k = 29 + 43 - 2 = 70.

Вывод: т.к. из таблицы t-критериев Стьюдента, то можно говорить о недостоверности различия выборок уже по I порогу доверительной вероятности.

Пример 7.3.

Результаты бега на коньках у мужчин на 500 м (с):

Найти оценку достоверности различия этих групп.

Решение:

Определим, на какой случай эта задача и выберем соответствующие формулы.

Задача на II случай, так как обе группы малы и варианты попарно-независимы. Следовательно, решать нужно по формулам:


,

.


Для этого нужно определить из формул:

,

.

Аналогично

Тогда:


k = 25+20-2=43.


Вывод: из таблицы t-критериев Стьюдента, то можно говорить о недостоверности различия выборок уже по I порогу доверительной вероятности.


Замечание.


Если задача на II случай, то данные выборки следует записывать в рабочую таблицу следующего вида:

Найденные суммы подставляют в соответствующие формулы:


.


Приведенная рабочая форма применяется и в I случае, если выборки даны своими вариантами, а , , и — неизвестны.

Пример 7.4.

До начала и после подготовительного этапа тренировочного цикла в команде баскетболистов фиксировалась результативность выполнения бросков в %. Определить значимость различных состояний команды.

Решение:

Задача на третий случай, так как сравниваются два различных состояния одной и той же выборки. Решать следует по формулам (5), (6) или (5), (7).

Данные занесем в рабочую таблицу вида:


По таблице t-критериев определим, что различие достоверно (причем, ) по II порогу доверительной вероятности.

Команда баскетболистов в результате проведенного цикла тренировок показала результаты значительно выше прежних.

Значимость определяется по формуле:


Ход работы.


ЗАДАЧА 1.

Определить различия в скоростно-силовой подготовке студентов-спринтеров, если их результаты в тройном прыжке таковы:

Решение:

1. Рабочая гипотеза: т.к. , то предположим, что спортсмены группы Х имеют более высокий уровень развития скоростно-силовых качеств, чем спортсмены группы Y.

2. Подтвердим данное предположение, рассчитав t -критерий Стьюдента по формуле:

=

Вывод:

ЗАДАЧА 2.

Сравнить какая группа студентов по показателю ЧСС покоя лучше, если их результаты таковы ( — данные 1-ой группы, — данные 2-ой группы):

Решение:

1. Результаты тестирования занести в рабочую таблицу и выполнить соответствующие расчеты:

2. На основании сравнения средних значений показателей X и Y выдвинуть рабочую гипотезу:

3. Подтвердить выдвинутое предположение, рассчитав значение t -критерия Стьюдента и числа степеней свободы по формулам:

Вывод:

ЗАДАЧА 3.

Определить значимость различий показателей количества подтягиваний на перекладине в группе спортсменов до начала и в конце периода тренировок силового характера, если данные таковы:

В начале периода

В конце периода

Решение:

1. Занести результаты тестирования в рабочую таблицу и сделать соответствующие расчеты:

2. Рассчитать значения t -критерия Стьюдента и числа степеней свободы по формулам:

Вывод:


Контрольные вопросы

1. Цель применения метода Стьюдента.
2. Доверительная вероятность и уровень значимости по Стьюденту, их пороги.
3. Какие выборки называются попарно-зависимыми?
4. Какие выборки называются попарно-независимыми?

 



Поделиться:


Последнее изменение этой страницы: 2017-01-19; просмотров: 1581; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.227.13.119 (0.006 с.)