Мы поможем в написании ваших работ!
ЗНАЕТЕ ЛИ ВЫ?
|
Способы возбуждения синхронных генераторов
Содержание книги
- Параметры идеального и реального ОУ. Основные схемы включения ОУ: инвертирующая, не инвертирующая, дифференциальная, повторитель напряжения.
- Классификация усилителей на транзисторах, параметры усилителей.
- Определение генератора импульсов, основные виды генераторов.
- Комбинационные логические устройства (КЛУ)
- Информационные электрические микромашины. Спец. трансформаторы тока.
- Информационные электрические микромашины. Автотрансформаторы.
- Поисковое оборудование. Дефектоискатели. Трассодефектоискатели и трассоискатели.
- Система для локализации мест повреждений на кабельных линиях. Установка для прожига места повреждения силовых кабелей.
- Генераторы электростанций. Синхронные генераторы.
- Способы возбуждения синхронных генераторов
- Генераторы электростанций. Характеристики генераторов, работающих на автономную сеть.
- Генераторы электростанций. Включение генераторов на параллельную работу с сетью постоянного напряжения и постоянно частоты.
- Генераторы электростанций. Статическая устойчивость работы генераторов при работе параллельно с сетью бесконечной мощности.
- Основное электрическое оборудование электрических станций. Коммутационные и защитные аппараты высокого напряжения.
- Электрические схемы электростанций и подстанций. Схемы, применяемые на генераторном напряжении.
- Электрические схемы электростанций и подстанций. Схемы, применяемые на высшем и среднем напряжениях.
- Электрические схемы электростанций и подстанций. Типовая сетка схем распределительных устройств
- Электрические схемы электростанций и подстанций. Структурные схемы электрических станций и подстанций
- Электрические схемы электростанций и подстанций. Электроснабжение собственных нужд электростанций и подстанций
- Мощность ГЭС и выработка энергии
- Нетрадиционные источники энергии. Солнечная энергетика.
- Нетрадиционные источники энергии. Ветроэнергетика.
- Устройства и функционирование тэц. Раздельная и комбинированная выработка электроэнергии и тепла. Показатели качества работы тэс
- Устройство и функционирование аэс. Технологические схемы производства электроэнергии на аэс.
- Схемотехника. Регулируемые источники питания, определение, классификация, потенциометр и схема Дарлингтона.
- Схемотехника. Ступенчатые регуляторы.
- Схемотехника. Стабилизаторы напряжения.
- Схемотехника. Согласование сопротивлений, тепловой шум.
- Схемотехника. Усилители на высоких частотах
- Причины возникновения переходных процессов в электроэнергетических системах.
- Выбор выключателей по отключающей способности.
- Влияние несимметрии ротора синхронной машины на переходный процесс при нарушении симметрии трехфазной цепи.
- Особенности распространения токов нулевой последовательности по воздушным линиям электропередач.
- Особенности простого замыкания на землю в распределительных сетях.
- Влияние изменения параметров проводников на значение тока КЗ.
- Расчетов тока КЗ в установках напряжением до 1000в.
- Статическая и динамическая устойчивость системы.
- Критерии устойчивости и избыточная мощность.
- Критерии устойчивости асинхронного двигателя.
- Критерии динамической устойчивости электрической системы.
- Суть метода последовательных интервалов при определении времени отключения.
- Запас устойчивости электрической системы по напряжению.
- Запас устойчивости электропередачи.
- Схемы замещения линии электропередачи.
- Схемы замещения синхронной машины.
- Как можно получить расчетом и экспериментом статические характеристики комплексной нагрузки.
- Статические характеристики асинхронного двигателя. Понятие критического скольжения, момента, мощности. «Опрокидывание» асинхронного двигателя.
- Динамические характеристики асинхронного двигателя.
- Характеристики синхронной нагрузки.
- Выбор токов и времени срабатывания максимальной токовой защиты.
Похожие статьи вашей тематики
Самым распространенным способом создания основного магнитного потока синхронных генераторов является электромагнитное возбуждение, состоящее в том, что на полюсах ротора располагают обмотку возбуждения, при прохождении по которой постоянного тока, возникает МДС, создающая в генераторе магнитное поле. До последнего времени для питания обмотки возбуждения применялись преимущественно специальные генераторы постоянного тока независимого возбуждения, называемые возбудителями В (рис. 1.3, а). Обмотка возбуждения (ОВ) получает питание от другого генератора (параллельного возбуждения), называемого подвозбудителем (ПВ). Ротор синхронного генератора, возбудителя и подвозбудителя располагаются на общем валу и вращаются одновременно. При этом ток в обмотку возбуждения синхронного генератора поступает через контактные кольца и щётки. Для регулирования тока возбуждения применяют регулировочные реостаты, включаемые в цепи возбуждения возбудителя r 1 и подвозбудителя r 2. В синхронных генераторах средней и большой мощности процесс регулирования тока возбуждения автоматизируют.
В синхронных генераторах получила применение также бесконтактная система электромагнитного возбуждения, при которой синхронный генератор не имеет контактных колец на роторе. В качестве возбудителя в этом случае применяют обращенный синхронный генератор переменного тока В (рис. 1.3, б). Трехфазная обмотка 2 возбудителя, в которой наводится переменная ЭДС, расположена на роторе и вращается вместе с обмоткой возбуждения синхронного генератора и их электрическое соединение осуществляется через вращающийся выпрямитель 3 непосредственно, без контактных колец и щёток. Питание постоянным током обмотки возбуждения 1 возбудителя В осуществляется от подвозбудителя ПВ – генератора постоянного тока. Отсутствие скользящих контактов в цепи возбуждения синхронного генератора позволяет повысить её эксплуатационную надёжность и увеличить КПД.
В синхронных генераторах, в этом числе гидрогенераторах, получил распространение принцип самовозбуждения (рис. 1.4, а), когда энергия переменного тока, необходимая для возбуждения, отбирается от обмотки статора синхронного генератора и через понижающий трансформатор и выпрямительный полупроводниковый преобразователь ПП преобразуется в энергию постоянного тока. Принцип самовозбуждения основан на том, что первоначальное возбуждение генератора происходит за счёт остаточного магнетизма машины.
На рис. 1.4, б представлена структурная схема автоматической системы самовозбуждения синхронного генератора (СГ) с выпрямительным трансформатором (ВТ) и тиристорным преобразователем (ТП), через которые электроэнергия переменного тока из цепи статора СГ после преобразования в постоянный ток подаётся в обмотку возбуждения. Управление тиристорным преобразователем осуществляется посредством автоматического регулятора возбуждения АРВ, на вход которого поступают сигналы напряжения на входе СГ (через трансформатор напряжения ТН) и тока нагрузки СГ (от трансформатора тока ТТ). Схема содержит блок защиты (БЗ), обеспечивающий защиту обмотки возбуждения (ОВ) от перенапряжения и токовой перегрузки.
Мощность, затрачиваемая на возбуждение, обычно составляет от 0,2 до 5 % полезной мощности (меньшее значение относится к генераторам большой мощности).
В генераторах малой мощности находит применение принцип возбуждения постоянными магнитами, расположенными на роторе машины. Такой способ возбуждения даёт возможность избавить генератор от обмотки возбуждения. В результате конструкция генератора существенно упрощается, становится более экономичной и надёжной. Однако, из-за высокой стоимости материалов для изготовления постоянных магнитов с большим запасом магнитной энергии и сложности их обработки применение возбуждения постоянными магнитами ограничено машинами мощностью не более нескольких киловатт.
Синхронные генераторы составляют основу электроэнергетики, так как практически вся электроэнергия во всём мире вырабатывается посредством синхронных турбо- или гидрогенераторов. Так же синхронные генераторы находят широкое применение в составе стационарных и передвижных электроустановок или станций в комплекте с дизельными и бензиновыми двигателями.
|