Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Контрольная работа по основам научно-технического перевода↑ Стр 1 из 4Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Контрольная работа по основам научно-технического перевода для студентов 34 группы Аннотационный перевод текста
Аннотационный перевод - вид технического перевода, заключающийся в составлении аннотации оригинала на другом языке. Аннотация - краткая характеристика оригинала, излагающая его содержание в виде перечня основных вопросов и иногда дающая критическую оценку. Объем аннотационного перевода обычно составляет не более 500 печатных знаков. Выполняя аннотационный перевод, Вы сообщаете о том, что изучается, описывается, обсуждается и т.д. При этом, для английского языка наиболее характерны предложения со сказуемым в пассивном залоге и прямой порядок слов, а для русского языка - предложения со сказуемым в страдательном залоге, но с обратным порядком слов. Например: Изучается вопрос программирования. Изложены основные принципы. Описаны преимущества данного метода. Примерная схема аннотационного перевода 1. Постановка проблемы. 2. Методы решения проблемы. 3. Выделение узловых пунктов статьи. 4. Рекомендации. Основные клише и штампы, используемые при аннотационном переводе: 1. Статья посвящена вопросу... Речь идет о... 2. Предлагаются методы... Описываются преимущества методов... 3. Особое внимание уделяется... Автор подчеркивает важность... 4. Статья представляет интерес для... Вариант 1 Переведите текст письменно. Machining is any of various processes in which a piece of raw material is cut into a desired final shape and size by a controlled material-removal process. The many processes that have this common theme, controlled material removal, are today collectively known as subtractive manufacturing, in distinction from processes of controlled material addition, which are known as additive manufacturing. The precise meaning of the term "machining" has evolved over the past two centuries as technology has advanced. During the Machine Age, it referred to (what we today might call) the "traditional" machining processes, such as turning, boring, drilling, milling, broaching,sawing, shaping, planing, reaming, and tapping. In these "traditional" or "conventional" machining processes, machine tools, such aslathes, milling machines, drill presses, or others, are used with a sharp cutting tool to remove material to achieve a desired geometry. Since the advent of new technologies such as electrical discharge machining, electrochemical machining, electron beam machining, photochemical machining, and ultrasonic machining, the retronym "conventional machining" can be used to differentiate those classic technologies from the newer ones. In current usage, the term "machining" without qualification usually implies the traditional machining processes. Machining is a part of the manufacture of many metal products, but it can also be used on materials such as wood, plastic, ceramic, andcomposites. A person who specializes in machining is called a machinist. A room, building, or company where machining is done is called a machine shop. Machining can be a business, a hobby, or both.[4] Much of modern day machining is carried out by computer numerical control (CNC), in which computers are used to control the movement and operation of the mills, lathes, and other cutting machines. Вариант 2 Переведите текст письменно. Machining operations
Turning operations are operations that rotate the workpiece as the primary method of moving metal against the cutting tool. Lathes are the principal machine tool used in turning. Milling operations are operations in which the cutting tool rotates to bring cutting edges to bear against the workpiece. Milling machines are the principal machine tool used in milling. Drilling operations are operations in which holes are produced or refined by bringing a rotating cutter with cutting edges at the lower extremity into contact with the workpiece. Drilling operations are done primarily in drill presses but sometimes on lathes or mills. Miscellaneous operations are operations that strictly speaking may not be machining operations in that they may not be swarfproducing operations but these operations are performed at a typical machine tool. Burnishing is an example of a miscellaneous operation. Burnishing produces no swarf but can be performed at a lathe, mill, or drill press. An unfinished workpiece requiring machining will need to have some material cut away to create a finished product. A finished product would be a workpiece that meets the specifications set out for that workpiece by engineering drawings or blueprints. For example, a workpiece may be required to have a specific outside diameter. A lathe is a machine tool that can be used to create that diameter by rotating a metal workpiece, so that a cutting tool can cut metal away, creating a smooth, round surface matching the required diameter and surface finish. A drill can be used to remove metal in the shape of a cylindrical hole. Other tools that may be used for various types of metal removal are milling machines, saws, and grinding machines. Many of these same techniques are used in woodworking. More recent, advanced machining techniques include electrical discharge machining (EDM), electro-chemical erosion, laser cutting, or water jet cutting to shape metal workpieces. Вариант 3. Переведите текст письменно. Вариант 4 Переведите текст письменно. The cutting tool A cutting tool has one or more sharp cutting edges and is made of a material that is harder than the work material. The cutting edge serves to separate chip from the parent work material. Connected to the cutting edge are the two surfaces of the tool: · The rake face; and · The flank. The rake face which directs the flow of newly formed chip, is oriented at a certain angle is called the rake angle "α". It is measured relative to the plane perpendicular to the work surface. The rake angle can be positive or negative. The flank of the tool provides a clearance between the tool and the newly formed work surface, thus protecting the surface from abrasion, which would degrade the finish. This angle between the work surface and the flank surface is called the relief angle. There are two basic types of cutting tools: · Single point tool; and · Multiple-cutting-edge tool A single point tool has one cutting edge and is used for turning, boreing and planing. During machining, the point of the tool penetrates below the original work surface of the workpart. The point is sometimes rounded to a certain radius, called the nose radius. Multiple-cutting-edge tools have more than one cutting edge and usually achieve their motion relative to the workpart by rotating. Drilling and milling uses rotating multiple-cutting-edge tools. Although the shapes of these tools are different from a single-point tool, many elements of tool geometry are similar. Cutting conditions Relative motion is required between the tool and work to perform a machining operation. The primary motion is accomplished at a certain cutting speed. In addition, the tool must be moved laterally across the work. This is a much slower motion, called the feed. The remaining dimension of the cut is the penetration of the cutting tool below the original work surface, called the depth of cut. Collectively, speed, feed, and depth of cut are called the cutting conditions. They form the three dimensions of the machining process, and for certain operations, their product can be used to obtain the material removal rate for the process: Вариант 5 Переведите текст письменно. Stages in metal cutting Machining operations usually divide into two categories, distinguished by purpose and cutting conditions: · Roughing cuts, and · Finishing cuts Roughing cuts are used to remove large amount of material from the starting workpart as rapidly as possible, i.e. with a large Material Removal Rate (MRR), in order to produce a shape close to the desired form, but leaving some material on the piece for a subsequent finishing operation. Finishing cuts are used to complete the part and achieve the final dimension, tolerances, and surface finish. In production machining jobs, one or more roughing cuts are usually performed on the work, followed by one or two finishing cuts. Roughing operations are done at high feeds and depths – feeds of 0.4-1.25 mm/rev (0.015-0.050 in/rev) and depths of 2.5-20 mm (0.100-0.750 in) are typical, but actual values depend on the workpiece materials. Finishing operations are carried out at low feeds and depths - feeds of 0.0125-0.04 mm/rev (0.0005-0.0015 in/rev) and depths of 0.75-2.0 mm (0.030-0.075 in) are typical. Cutting speeds are lower in roughing than in finishing. A cutting fluid is often applied to the machining operation to cool and lubricate the cutting tool. Determining whether a cutting fluid should be used, and, if so, choosing the proper cutting fluid, is usually included within the scope of cutting condition. Today other forms of metal cutting are becoming increasingly popular. An example of this is water jet cutting. Water jet cutting involves pressurized water in excess of 620 MPa (90 000 psi) and is able to cut metal and have a finished product. This process is called cold cutting, and it increases efficiency as opposed to laser and plasma cutting. Вариант 6 Переведите текст письменно. A lathe is a machine tool which rotates the workpiece on its axis to perform various operations such as cutting, sanding, knurling,drilling, or deformation, facing, turning, with tools that are applied to the workpiece to create an object which has symmetry about an axis of rotation. Lathes are used in woodturning, metalworking, metal spinning, thermal spraying parts reclamation, and glass-working. Lathes can be used to shape pottery, the best-known design being the potter's wheel. Most suitably equipped metalworking lathes can also be used to produce most solids of revolution, plane surfaces and screw threads or helices. Ornamental lathes can produce three-dimensional solids of incredible complexity. The material can be held in place by either one or two centers, at least one of which can be moved horizontally to accommodate varying material lengths. Other work-holding methods include clamping the work about the axis of rotation using a chuck or collet, or to a faceplate, using clamps or dogs. Examples of objects that can be produced on a lathe include candlestick holders, gun barrels, cue sticks, table legs, bowls, baseball bats, musical instruments (especially woodwind instruments), crankshafts, and camshafts. The lathe is an ancient tool, dating at least to ancient Egypt and known and used in Assyria and ancient Greece. The origin of turning dates to around 1300 BC when the Ancient Egyptians first developed a two-person lathe. One person would turn the wood work piece with a rope while the other used a sharp tool to cut shapes in the wood. Ancient Rome improved the Egyptian design with the addition of a turning bow. In the Middle Ages a pedal replaced hand-operated turning, freeing both the craftsman's hands to hold the woodturning tools. The pedal was usually connected to a pole, often a straight-grained sapling. The system today is called the "spring pole" lathe. Spring pole lathes were in common use into the early 20th century. Вариант 7 Переведите текст письменно. A lathe may or may not have a stand (or legs), which sits on the floor and elevates the lathe bed to a working height. Some lathes are small and sit on a workbench or table, and do not have a stand. Almost all lathes have a bed, which is (almost always) a horizontal beam (although CNC lathes commonly have an inclined or vertical beam for a bed to ensure that swarf, or chips, falls free of the bed). Woodturning lathes specialized for turning large bowls often have no bed or tail stock, merely a free-standing headstock and a cantilevered tool rest. At one end of the bed (almost always the left, as the operator faces the lathe) is a headstock. The headstock contains high-precision spinning bearings. Rotating within the bearings is a horizontal axle, with an axis parallel to the bed, called the spindle. Spindles are often hollow, and have exterior threads and/or an interior Morse taper on the "inboard" (i.e., facing to the right / towards the bed) by which work-holding accessories may be mounted to the spindle. Spindles may also have exterior threads and/or an interior taper at their "outboard" (i.e., facing away from the bed) end, and/or may have a hand-wheel or other accessory mechanism on their outboard end. Spindles are powered, and impart motion to the workpiece. The spindle is driven, either by foot power from a treadle and flywheel or by a belt or gear drive to a power source. In most modern lathes this power source is an integral electric motor, often either in the headstock, to the left of the headstock, or beneath the headstock, concealed in the stand. In addition to the spindle and its bearings, the headstock often contains parts to convert the motor speed into various spindle speeds. Various types of speed-changing mechanism achieve this, from a cone pulley or step pulley, to a cone pulley with back gear (which is essentially a low range, similar in net effect to the two-speed rear of a truck), to an entire gear train similar to that of a manual-shift auto transmission. Some motors have electronic rheostat-type speed controls, which obviates cone pulleys or gears. Вариант 8 Переведите текст письменно. Unless a workpiece has a taper machined onto it which perfectly matches the internal taper in the spindle, or has threads which perfectly match the external threads on the spindle (two conditions which rarely exist), an accessory must be used to mount a workpiece to the spindle. A workpiece may be bolted or screwed to a faceplate, a large, flat disk that mounts to the spindle. In the alternative, faceplate dogs may be used to secure the work to the faceplate. A workpiece may be mounted on a mandrel, or circular work clamped in a three- or four-jaw chuck. For irregular shaped workpieces it is usual to use a four jaw (independent moving jaws) chuck. These holding devices mount directly to the Lathe headstock spindle. In precision work, and in some classes of repetition work, cylindrical workpieces are usually held in a collet inserted into the spindle and secured either by a draw-bar, or by a collet closing cap on the spindle. Suitable collets may also be used to mount square or hexagonal workpieces. In precision toolmaking work such collets are usually of the draw-in variety, where, as the collet is tightened, the workpiece moves slightly back into the headstock, whereas for most repetition work the dead length variety is preferred, as this ensures that the position of the workpiece does not move as the collet is tightened. A soft workpiece (wooden) may be pinched between centers by using a spur drive at the headstock, which bites into the wood and imparts torque to it. A soft dead center is used in the headstock spindle as the work rotates with the centre. Because the centre is soft it can be trued in place before use. The included angle is 60°. Traditionally, a hard dead center is used together with suitable lubricant in the tailstock to support the workpiece. In modern practice the dead center is frequently replaced by a live center, as it turns freely with the workpiece — usually on ball bearings — reducing the frictional heat, especially important at high speeds.
Вариант 9 Переведите текст письменно. Metalworking lathes In a metalworking lathe, metal is removed from the workpiece using a hardened cutting tool, which is usually fixed to a solid moveable mounting, either a tool-post or a turret, which is then moved against the workpiece using handwheels and/or computer controlled motors. These (cutting) tools come in a wide range of sizes and shapes depending upon their application. Some common styles are diamond, round, square and triangular. The tool-post is operated by lead-screws that can accurately position the tool in a variety of planes. The tool-post may be driven manually or automatically to produce the roughing and finishing cuts required to turn the workpiece to the desired shape and dimensions, or for cutting threads, worm gears, etc. Cutting fluid may also be pumped to the cutting site to provide cooling, lubrication and clearing of swarffrom the workpiece. Some lathes may be operated under control of a computer for mass production of parts. Manually controlled metalworking lathes are commonly provided with a variable ratio gear train to drive the main lead-screw. This enables different thread pitches to be cut. On some older lathes or more affordable new lathes, the gear trains are changed by swapping gears with various numbers of teeth onto or off of the shafts, while more modern or expensive manually controlled lathes have a quick change box to provide commonly used ratios by the operation of a lever. CNC lathes use computers and servomechanisms to regulate the rates of movement. On manually controlled lathes, the thread pitches that can be cut are, in some ways, determined by the pitch of the lead-screw: A lathe with a metric lead-screw will readily cut metric threads (including BA), while one with an imperial lead-screw will readily cut imperial unit based threads such as BSW or UTS (UNF,UNC). This limitation is not insurmountable, because a 127-tooth gear, called a transposing gear, is used to translate between metric and inch thread pitches. However, this is optional equipment that many lathe owners do not own. Вариант 10 Переведите текст письменно. Technology ("science of craft", from Greek τέχνη, techne, "art, skill, cunning of hand"; and -λογία, -logia [2]) is the collection of techniques, skills, methods and processes used in the production of goods or services or in the accomplishment of objectives, such as scientific investigation. Technology can be the knowledge of techniques, processes, and the like, or it can be embedded in machines, computers, devices, and factories, which can be operated by individuals without detailed knowledge of the workings of such things. The human species' use of technology began with the conversion of natural resources into simple tools. Theprehistoric discovery of how to control fire and the later Neolithic Revolution increased the available sources of food and the invention of the wheel helped humans to travel in and control their environment. Developments in historic times, including the printing press, the telephone, and the Internet, have lessened physical barriers tocommunication and allowed humans to interact freely on a global scale. The steady progress of military technology has brought weapons of ever-increasing destructive power, from clubs to nuclear weapons. Technology has many effects. It has helped develop more advanced economies (including today's global economy) and has allowed the rise of a leisure class. Many technological processes produce unwanted by-products known as pollution and deplete natural resources to the detriment of Earth's environment. Various implementations of technology influence the values of a society and new technology often raises new ethical questions. Examples include the rise of the notion of efficiency in terms of human productivity, a term originally applied only to machines, and the challenge of traditional norms. Philosophical debates have arisen over the use of technology, with disagreements over whether technology improves the human condition or worsens it. Neo-Luddism, anarcho-primitivism, and similar reactionary movements criticise the pervasiveness of technology in the modern world, arguing that it harms the environment and alienates people; proponents of ideologies such as transhumanism and techno-progressivism view continued technological progress as beneficial to society and the human condition. Вариант 11 Переведите текст письменно. The use of the term "technology" has changed significantly over the last 200 years. Before the 20th century, the term was uncommon in English, and usually referred to the description or study of the useful arts The term was often connected to technical education, as in the Massachusetts Institute of Technology (chartered in 1861).[ The term "technology" rose to prominence in the 20th century in connection with the Second Industrial Revolution. The term's meanings changed in the early 20th century when American social scientists, beginning with Thorstein Veblen, translated ideas from the German concept of Technik into "technology." In German and other European languages, a distinction exists between technik and technologie that is absent in English, which usually translates both terms as "technology." By the 1930s, "technology" referred not only to the study of the industrial arts but to the industrial arts themselves. In 1937, the American sociologist Read Bain wrote that "technology includes all tools, machines, utensils, weapons, instruments, housing, clothing, communicating and transporting devices and the skills by which we produce and use them."[6] Bain's definition remains common among scholars today, especially social scientists, but equally prominent is the definition of technology as applied science, especially among scientists and engineers, although most social scientists who study technology reject this definition.[7] More recently, scholars have borrowed from European philosophers of "technique" to extend the meaning of technology to various forms of instrumental reason, as in Foucault's work on technologies of the self (techniques de soi). Dictionaries and scholars have offered a variety of definitions. The Merriam-Webster Learner's Dictionary offers a definition of the term: "the use of science in industry, engineering, etc., to invent useful things or to solve problems" and "a machine, piece of equipment, method, etc., that is created by technology."[8] Ursula Franklin, in her 1989 "Real World of Technology" lecture, gave another definition of the concept; it is "practice, the way we do things around here."[9] The term is often used to imply a specific field of technology, or to refer to high technology or just consumer electronics, rather than technology as a whole.
Вариант 12 Переведите текст письменно. Technology can be most broadly defined as the entities, both material and immaterial, created by the application of mental and physical effort in order to achieve some value. In this usage, technology refers to tools and machines that may be used to solve real-world problems. It is a far-reaching term that may include simple tools, such as a crowbar or wooden spoon, or more complex machines, such as a space station or particle accelerator. Tools and machines need not be material; virtual technology, such as computer software and business methods, fall under this definition of technology. W. Brian Arthur defines technology in a similarly broad way as "a means to fulfill a human purpose." The word "technology" can also be used to refer to a collection of techniques. In this context, it is the current state of humanity's knowledge of how to combine resources to produce desired products, to solve problems, fulfill needs, or satisfy wants; it includes technical methods, skills, processes, techniques, tools and raw materials. When combined with another term, such as "medical technology" or "space technology," it refers to the state of the respective field's knowledge and tools. "State-of-the-art technology" refers to the high technology available to humanity in any field. The invention of integrated circuits and the microprocessor (here, an Intel 4004 chip from 1971) led to the modern computer revolution. Technology can be viewed as an activity that forms or changes culture. Additionally, technology is the application of math, science, and the arts for the benefit of life as it is known. A modern example is the rise of communication technology, which has lessened barriers to human interaction and as a result has helped spawn new subcultures; the rise of cyberculture has at its basis the development of the Internet and the computer. Not all technology enhances culture in a creative way; technology can also help facilitate political oppression and war via tools such as guns. As a cultural activity, technology predates bothscience and engineering, each of which formalize some aspects of technological endeavor. Вариант 13 Переведите текст письменно. The distinction between science, engineering, and technology is not always clear. Science is systematic knowledge of the physical or material world gained through observation and experimentation. Technologies are not usually exclusively products of science, because they have to satisfy requirements such as utility, usability, and safety. Engineering is the goal-oriented process of designing and making tools and systems to exploit natural phenomena for practical human means, often (but not always) using results and techniques from science. The development of technology may draw upon many fields of knowledge, including scientific, engineering, mathematical, linguistic, and historical knowledge, to achieve some practical result. Technology is often a consequence of science and engineering, although technology as a human activity precedes the two fields. For example, science might study the flow of electrons in electrical conductors by using already-existing tools and knowledge. This new-found knowledge may then be used by engineers to create new tools and machines such as semiconductors, computers, and other forms of advanced technology. In this sense, scientists and engineers may both be considered technologists; the three fields are often considered as one for the purposes of research and reference. The exact relations between science and technology in particular have been debated by scientists, historians, and policymakers in the late 20th century, in part because the debate can inform the funding of basic and applied science. In the immediate wake of World War II, for example, it was widely considered in the United States that technology was simply "applied science" and that to fund basic science was to reap technological results in due time. An articulation of this philosophy could be found explicitly in Vannevar Bush's treatise on postwar science policy, Science—The Endless Frontier: "New products, new industries, and more jobs require continuous additions to knowledge of the laws of nature... This essential new knowledge can be obtained only through basic scientific research."
Вариант 14 Переведите текст письменно. Вариант 15 Переведите текст письменно. Competitiveness Technology is properly defined as any application of science to accomplish a function. The science can be leading edge or well established and the function can have high visibility or be significantly more mundane, but it is all technology, and its exploitation is the foundation of all competitive advantage. Technology-based planning is what was used to build the US industrial giants before WWII (e.g., Dow, DuPont, GM) and it is what was used to transform the US into asuperpower. It was not economic-based planning. Project Socrates In 1983 Project Socrates was initiated in the US intelligence community to determine the source of declining US economic and military competitiveness. Project Socrates concluded that technology exploitation is the foundation of all competitive advantage and that declining US competitiveness was from decision-making in the private and public sectors switching from technology exploitation (technology-based planning) to money exploitation (economic-based planning) at the end of World War II. Project Socrates determined that to rebuild US competitiveness, decision making throughout the US had to readopt technology-based planning. Project Socrates also determined that countries like China and India had continued executing technology-based (while the US took its detour into economic-based) planning, and as a result had considerably advanced the process and were using it to build themselves into superpowers. To rebuild US competitiveness the US decision-makers needed to adopt a form of technology-based planning that was far more advanced than that used by China and India. Project Socrates determined that technology-based planning makes an evolutionary leap forward every few hundred years and the next evolutionary leap, the Automated Innovation Revolution, was poised to occur. In the Automated Innovation Revolution the process for determining how to acquire and utilize technology for a competitive advantage (which includes R&D) is automated so that it can be executed with unprecedented speed, efficiency and agility. Project Socrates developed the means for automated innovation so that the US could lead the Automated Innovation Revolution in order to rebuild and maintain the country's economic competitiveness for many generations.
Вариант 16 Переведите текст письменно. The first working steam-powered vehicle was designed—and most likely built—by Ferdinand Verbiest, a Flemish member of a Jesuit mission in China around 1672. It was a 65-cm-long scale-model toy for the Chinese Emperor that was unable to carry a driver or a passenger. It is not known if Verbiest's model was ever built. Cugnot's 1771 fardier à vapeur, as preserved at the Musée des Arts et Métiers, Paris Nicolas-Joseph Cugnot is widely credited with building the first full-scale, self-propelled mechanical vehicle or car in about 1769; he created a steam-powered tricycle. He also constructed two steam tractors for the French Army, one of which is preserved in the French National Conservatory of Arts and Crafts.[24] His inventions were, however, handicapped by problems with water supply and maintaining steam pressure.[24] In 1801, Richard Trevithick built and demonstrated his Puffing Devil road locomotive, believed by many to be the first demonstration of a steam-powered road vehicle. It was unable to maintain sufficient steam pressure for long periods, and was of little practical use. The development of external combustion engines is detailed as part of the history of the car, but often treated separately from the development of true cars. A variety of steam-powered road vehicles were used during the first part of the 19th century, including steam cars, steam buses, phaetons, and steam rollers. Sentiment against them led to the Locomotive Acts of 1865. In 1807, Nicéphore Niépce and his brother Claude created what was probably the world's first internal combustion engine(which they called a Pyréolophore), but they chose to install it in a boat on the river Saone in France. Coincidentally, in 1807 the Swiss inventor François Isaac de Rivaz designed his own 'de Rivaz internal combustion engine' and used it to develop the world's first vehicle to be powered by such an engine. The Niépces' Pyréolophore was fuelled by a mixture of Lycopodium powder (dried spores of the Lycopodium plant), finely crushed coal dust and resin that were mixed with oil, whereas de Rivaz used a mixture of hydrogen and oxygen Neither design was very successful, as was the case with others, such as Samuel Brown, Samuel Morey, and Etienne Lenoir with his hippomobile, who each produced vehicles (usually adapted carriages or carts) powered by internal combustion engines. Вариант 17 Переведите текст письменно. In November 1881, French inventor Gustave Trouvé demonstrated the first working (three-wheeled) car powered by electricity at the International Exposition of Electricity, Paris. Karl Benz, the inventor of the modern car Although several other German engineers (including Gottlieb Daimler, Wilhelm Maybach, and Siegfried Marcus) were working on the problem at about the same time, Karl Benz generally is acknowledged as the inventor of the modern car. A photograph of the original Benz Patent-Motorwagen, first built in 1885 and awarded the patent for the concept In 1879, Benz was granted a patent for his first engine, which had been designed in 1878. Many of his other inventions made the use of the internal combustion engine feasible for powering a vehicle. His first Motorwagen was built in 1885 in Mannheim, Germany. He was awarded the patent for its invention as of his application on 29 January 1886 (under the auspices of his major company, Benz & Cie., which was founded in 1883). Benz began promotion of the vehicle on 3 July 1886, and about 25 Benz vehicles were sold between 1888 and 1893, when his first four-wheeler was introduced along with a model intended for affordability. They also were powered with four-stroke engines of his own design. Emile Rogerof France, already producing Benz engines under license, now added the Benz car to his line of products. Because France was more open to the early cars, initially more were built and sold in France through Roger than Benz sold in Germany. In August 1888 Bertha Benz, the wife of Karl Benz, undertook the first road trip by car, to prove the road-worthiness of her husband's invention. Bertha Benz, the first long distance car driver in the world In 1896, Benz designed and patented the first internal-combustion flat engine, called boxermotor. During the last years of the nineteenth century, Benz was the largest car company in the world with 572 units produced in 1899 and, because of its size, Benz & Cie., became a joint-stock company. The first motor car in central Europe and one of the first factory-made cars in the world, was produced by Czech company Nesselsdorfer Wagenbau (later renamed to Tatra) in 1897, the Präsident automobil. Вариант 18 Переведите текст письменно. Daimler and Maybach founded Daimler Motoren Gesellschaft (DMG) in Cannstatt in 1890, and sold their first car in 1892 under the brand name Daimler. It was a horse-drawn stagecoach built by another manufacturer, which they retrofitted with an engine of their design. By 1895 about 30 vehicles had been built by Daimler and Maybach, either at the Daimler works or in the Hotel Hermann, where they set up shop after disputes with their backers. Benz, Maybach and the Daimler team seem to have been unaware of each other's early work. They never worked together; by the time of the merger of the two companies, Daimler and Maybach were no longer part of DMG. Daimler died in 1900 and later that year, Maybach designed an engine named Daimler-Mercedes that was placed in a specially ordered model built to specifications set by Emil Jellinek. This was a production of a small number of vehicles for Jellinek to race and market in his country. Two years later, in 1902, a new model DMG car was produced and the model was named Mercedes after the Maybach engine, which generated 35 hp. Maybach quit DMG shortly thereafter and opened a business of his own. Rights to the Daimler brand name were sold to other manufacturers. Karl Benz proposed co-operation between DMG and Benz & Cie. when economic conditions began to deteriorate in Germany following the First World War, but the directors of DMG refused to consider it initially. Negotiations between the two companies resumed several years later when these conditions worsened and, in 1924 they signed an Agreement of Mutual Interest, valid until the year 2000. Both enterprises standardized design, production, purchasing, and sales and they advertised or marketed their car models jointly, although keeping their respective brands. On 28 June 1926, Benz & Cie. and DMG finally merged as the Daimler-Benz company, baptizing all of its cars Mercedes Benz, as a brand honoring the most important model of the DMG cars, the Maybach design later referred to as the 1902 Mercedes-35 hp, along with the Benz name. Karl Benz remained a member of the board of directors of Daimler-Benz until his death in 1929, and at times his two sons also participated in the management of the company. In 1890, Émile Levassor and Armand Peugeot of France began producing vehicles with Daimler engines, and so laid the foundation of the automotive industry in France. In 1891, Auguste Doriot and his Peugeot colleague Louis Rigoulot completed the longest trip by a gasoline-powered vehicle when their self-designed and built Daimler powered Peugeot Type 3 completed 2,100 km (1,300 miles) from Valentigney to Paris and Brest and back again. Вариант 19 Переведите текст письменно. The large-scale, production-line manufacturing of affordable cars was debuted by Ransom Olds in 1901 at his Oldsmobile factory located in Lansing, Michigan and based upon stationary assembly line techniques pioneered by Marc Isambard Brunelat the Portsmouth Block Mills, England, in 1802. The assembly line style of mass production and interchangeable parts had been pioneered in the U.S. by Thomas Blanchard in 1821, at the Springfield Armory in Springfield, Massachusetts. This concept was greatly expanded by Henry Ford, beginning in 1913 with the world's first moving assembly line for cars at the Highland Park Ford Plant. As a result, Ford's cars came off the line in fifteen-minute intervals, much faster than previous methods, increasing productivity eightfold, while using less manpower (from 12.5-man-hours to 1 hour 33 minutes).[ It was so successful, paint became a bottleneck. Only Japan Black would dry fast enough, forcing the company to drop the variety of colors available before 1913, until fast-drying Duco lacquer was developed in 1926. This is the source of Ford's apocryphal remark, "any color as long as it's black". In 1914, an assembly line worker could buy a Model T with four months' pay. Ford's complex safety procedures—especially assigning each worker to a specific location instead of allowing them to roam about—dramatically reduced the rate of injury. The combination of high wages and high efficiency is called "Fordism," and was copied by most major industries. The efficiency gains from the assembly line also coincided with the economic rise of the United States. The assembly line forced workers to work at a certain pace with very repetitive motions which led to more output per worker while other countries were using less productive methods. In the automotive industry, its success was dominating, and quickly spread worldwide seeing the founding of Ford France and Ford Britain in 1911, Ford Denmark 1923, Ford Germany 1925; in 1921, Citroen was the first native European manufacturer to adopt the production method. Soon, companies had to have assembly lines, or risk going broke; by 1930, 250 companies which did not, had disappeared. Development of automotive technology was rapid, due in part to the hundreds of small manufacturers competing to gain the world's attention. Key developments included electric ignition and the electric self-starter (both by Charles Kettering, for the Cadillac Motor Company in 1910–1911), independent suspension, and four-wheel brakes. Вариант 20 Переведите текст письменно. Since the 1920s, nearly all cars have been mass-produced to meet market needs, so marketing plans often have heavily influenced car design. It was Alfred P. Sloan who established the idea of different makes of cars produced by one company, called the General Motors Companion Make Program, so that buyers could "move up" as their fortunes improved. Reflecting the rapid pace of change, makes shared parts with one another so larger production volume resulted in lower costs for each price range. For example, in the 1930s, La Salles, sold by Cadillac, used cheaper mechanical parts made by Oldsmobile; in the 1950s, Chevrolet shared hood, doors, roof, and windows with Pontiac; by the 1990s, corporate power trains and shared platforms (with interchangeable brakes, suspension, and other parts) were common. Even so, only major makers could afford high costs, and even companies with decades of production, such as Apperson, Cole, Dorris, Haynes, or Premier, could not manage: of some two hundred American car makers in existence in 1920, only 43 survived in 1930, and with the Great Depression, by 1940, only 17 of those were left. In Europe much the same would happen. Morris set up its production line at Cowley in 1924, and soon outsold Ford, while beginning in 1923 to follow Ford's practice of vertical integration, buying Hotchkiss (engines), Wrigley (gearboxes), and Osberton (radiators), for instance, as well as competitors, such as Wolseley: in 1925, Morris had 41% of total British car production. Most British small-car assemblers, from Abbey to Xtra, had gone under. Citroen did the same in France, coming to cars in 1919; between them and other cheap cars in reply such as Renault's 10CV and Peugeot's 5CV, they produced 550,000 cars in 1925, and Mors, Hurtu, and others could not compete. Germany's first mass-manufactured car, the Opel 4PS Laubfrosch (Tree Frog), came off the line at Russelsheim in 1924, soon making Opel the top car builder in Germany, with 37.5% of the market. In Japan, car production was very limited before World War II. Only a handful of companines were producing vehicles in limited numbers, and the vehicles were small, and three-wheeled for commercial uses, like Daihatsu, or were the result of partnering with European companies, like Isuzu building the Wolseley A-9 in 1922.Mitsubishi was also partnered with Fiat and built the Mitsubishi Model A based on a Fiat vehicle. Toyota, Nissan, Suzuki, Mazda, and Honda began as companies producing non-automotive products before the war, switching to car production during the 1950s. Вариант 21 Переведите текст письменно. The automotive industry designs, develops, manufactures, markets, and sells the world's motor vehicles. In 2008, more than 70 million motor vehicles, including cars and commercial vehicles were produced worldwide. In 2007, a total of 71.9 million new cars were sold worldwide: 22.9 million in Europe, 21.4 million in the Asia-Pacific Region, 19.4 million in the USA and Canada, 4.4 million in Latin America, 2.4 million in the Middle East and 1.4 million in Africa. The markets in North America and Japan were stagnant, while those in South America and other parts of Asia grew strongly. Of the major markets, China, Russia, Brazil and India saw the most rapid growth. About 250 million vehicles are in use in the United States. Around the world, there were about 806 million cars and light trucks on the road in 2007; they burn over 260 billion US gallons (980,000,000 m3) of gasoline and diesel fuel yearly. The numbers are increasing rapidly, especially in China and India.[10] In the opinion of some, urban transport systems based around the car have proved unsustainable, consuming excessive energy, affecting the health of populations, and delivering a declining level of service despite increasing investments. Many of these negative impacts fall disproportionately on those social groups who are also least likely to own and drive cars. The sustainable transport movement focuses on solutions to these problems. In 2008, with rapidly rising oil prices, industries such as the automotive industry, are experiencing a combination of pricing pressures from raw material costs and changes in consumer buying habits. The industry is also facing increasing external competition from the public transport sector, as consumers re-evaluate their private vehicle usage. Roughly half of the US's fifty-one light vehicle plants are projected to permanently close in the coming years, with the loss of another 200,000 jobs in the sector, on top of the 560,000 jobs lost this decade. Combined with robust growth in China, in 2009, this resulted in China becoming the largest car producer and market in the world. China 2009 sales had increased to 13.6 million, a significant increase from one million of domestic car sales in 2000. Since then however, even in China and other BRIC countries, the automotive production is again falling. Вариант 22 Переведите текст письменно. Industrial Revolution[ There is a general consensus among historian that the roots of the Industrial Engineering Profession date back to the Industrial Revolution. The technologies that helped mechanize traditional manual operations in the textile industry including the Flying shuttle, the Spinning jenny, and perhaps most importantly the Steam enginegenerated Economies of scale that made Mass production of in centralized locations attractive for the first time. The concept of the production system had its genesis in the factories created by these innovations. Specialization of labor Watt's steam engine (Technical University of Madrid) Adam Smith's concepts of Division of Labour and the "Invisible Hand" of capitalism introduced in his treatise "The Wealth of Nations" motivated many of the technological innovators of the Industrial revolution to establish and implement factory systems. The efforts of James Watt and Matthew Boulton led to the first integrated machine manufacturing facility in the world, including the implementation of concepts such as cost control systems to reduce waste and increase productivity and the institution of skills training for craftsmen. Charles Babbage became associated with Industrial engineering because of the concepts he introduced in his book "On the Economy of Machinery and Manufacturers" which he wrote as a result of his visits to factories in England and the United States in the early 1800s. The book includes subjects such as the time required to perform a specific task, the effects of subdividing tasks into smaller and less detailed elements, and the advantages to be gained from repetitive tasks. Interchangeable parts Eli Whitney and Simeon North proved the feasibility of the notion of Interchangeable parts in the manufacture of muskets and pistols for the US Government. Under this system, individual parts were mass-produced to tolerances to enable their use in any finished product. The result was a significant reduction in the need for skill from specialized workers, which eventually led to the industrial environment to be studied later. Pioneers Frederick Taylor is generally credited as being the father of the Industrial Engineering discipline. He earned a degree in mechanical engineering from Steven's University, and earned several patents from his inventions. His books, Shop Management and The Principles of Scientific management which were published in the early 1900s, were the beginning of Industrial Engineering. Контрольная работа по основам научно-технического перевода для студентов 34 группы
|
||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 692; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.108.192 (0.012 с.) |