Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Цикломатическое число МаккейбаСодержание книги
Поиск на нашем сайте
Впервые графическое представление программ было предложено Маккейбом. Основной метрикой сложности он предлагает читать цикломатическую сложность графа программы, или, как ее еще называют цикломатическое число Маккейба, характеризующее трудоемкость тестирования программы. Для вычисления цикломатического числа Маккейба Z(G) применяется формула Z(G) = e-v+2p (1) где e – число дуг ориентированного графа G; v – число вершин; 2p – число компонентов связности графа. Число компонентов связности графа можно рассматривать как количество дуг, которые необходимо добавить для преобразования графа в сильносвязнный. Сильносвязным называется граф, любые две вершины которого взаимно достижимы. Для графов корректных программ, т.е. графов, не имеющих недостижимых от точки входа участков и «висячих» точек входа и выхода, сильносвязанный граф получается путём замыкания дугой вершины, обозначающей конец программы на вершину, обозначающую точку входа в эту программу. Как правило, р = 1 По сути Z(G) определяет число линейно независимых контуров в сильносвязном графе. Иначе говоря, цикломатическое число Маккейба показывает требуемое количество проходов для покрытия всех контуров сильносвязного графа или количество тестовых прогонов программы, необходимых для исчерпывающего тестирования по критерию "работает каждая ветвь" Для программы, граф которой изображен на рисунке 1, цикломатическое число при e = 10, v = 8, p = 1, определится как Z(G) = 10-8+2=4. Таким образом, имеется сильносвязный граф с четырьмя линейно независимыми контурами: a-b-c-g-e-h-a; a-b-c--e-h-a; a-b-d-f-e-h-a; a-b-d-e-h-a. Цикломатическое число зависит только от количества предикатов, сложность которых при этом не учитывается. Например, имеется два оператора условия: IF X>0 THEN X=A; ELSE; и IF (X>0 & FLAG = '1'B)! (X=0 & FLAG = '0'B) THEN X=A; ELSE; Оба оператора предполагают единственное ветвление и могут быть представлены одним и тем же графом (рис. 2). Очевидно, цикломатическое число будет для обоих операторов одинаковым, не отражающим сложности предикатов, что весьма существенно при оценке программ.
Исходя из этого Г.Майерс предложил расширение этой метрики. Суть подхода Г.Майерса состоит в представлении метрики сложности программ в виде интервала [Z(G), Z(G)+h]. Для простого предиката h ≠ 0, а для n-местных предикатов h=n-1. Таким образом, первому оператору соответствует интервал [2, 2], а второму [2, 6]. Такая метрика позволяет различать программы, представленные одинаковыми графами.
|
||||
Последнее изменение этой страницы: 2016-12-28; просмотров: 881; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.75.238 (0.005 с.) |