Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Осмотическое давление и его измерениеСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Прибор, применяемый для количественного изучения осмоса, называется осмометром. Простейший осмометр представляет собой сосуд 1, дно которого является полупроницаемой перегородкой. К сосуду приварен тонкий капилляр. Сосуд 1 содержит разбавленный раствор сахара. Полупроницаемая перегородка (дно сосуда 1) может пропускать только молекулы воды (но не молекулы сахара!). Если сосуд 1 опустить в стакан 2, заполненный водой, то молекулы воды будут диффундировать в сосуд 1, где концентрация молекул воды меньше, чем в стакане 2. Рис 1. Простейший прибор для измерения осмотического давления: 1 – внутренний стакан; 2 – внешний стакан. Вследствие осмоса уровень раствора в сосуде 1 повышается, создавая дополнительное давление, которое препятствует осмосу. При некоторой высоте h столба жидкости в сосуде 1 дополнительное давление достигает такой величины, при которой осмос прекращается. Устанавливается равновесие между раствором данной концентрации и чистым растворителем, разделёнными полупроницаемой перегородкой. Увеличивая извне давление в сосуде 1, можно заставить воду переходить из сосуда 1 во внешний сосуд 2. При этом концентрация раствора в сосуде 1 будет возрастать до тех пор, пока не достигнет значения, соответствующего увеличенному давлению; установится новое равновесие между раствором и растворителем. Таким образом, равновесию между раствором заданной концентрации и чистым растворителем, разделёнными полупроницаемой перегородкой, соответствует определённое гидростатическое давление в сосуде с раствором. Гидростатическое давление, равное высоте h, препятствующее односторонней диффузии растворителя, численно равно осмотическому давлению πосм раствора. В 1887 г ботаник Пфеффер экспериментально установил две закономерности, которым подчиняется осмотическое давление неэлектролита. 1. В разбавленных растворах неэлектролита при данной температуре осмотическое давление прямо пропорционально концентрации πосм = К1С 2. При одной и той же концентрации С (моль/л) осмотическое давление разбавленного раствора прямо пропорционально абсолютной температуре πосм= К2С Вант-Гофф обратил внимание на аналогию между законами Пфеффера и газовыми законами Гей-Люссака и Бойля-Мариотта. Анализируя числовые данные, он пришел к выводу, что величину осмотического давления можно вычислять по следующей формуле: πосм = СRT, где С – концентрация вещества в растворе, R – универсальная газовая постоянная, Т – абсолютная температура. Это выражение носит название закона Вант-Гоффа для осмотического давления. Приведём формулировку закона, данную Вант-Гоффом: Осмотическое давление разбавленного раствора неэлектролита равно тому давлению, которое производило бы растворённое вещество, если бы оно при той же температуре находилось в газообразном состоянии и занимало объём, равный объёму раствора. Однако, несмотря на сходство с уравнением состояния идеальных газов, аналогия между осмотическим и газовым давлением случайна. В биологических жидкостях (моча, плазма, слюна, молоко и др.) в больших количествах содержатся неорганические и органические вещества в виде молекул, ионов и коллоидных частиц. Их суммарная концентрация носит название осмотической концентрации (или осмолярности). и именно эта величина должна быть использована в уравнении Вант-Гоффа. Осмолярная концентрация – суммарное молярное количество всех кинетически активных, т.е.э способных к самостоятельному движению, частиц, содержащихся в 1 литре раствора, независимо от их формы, размера и природы. Осмолярная концентрация раствора связана с его молярной концентрацией через изотонический коэффициент cосм =ic(x). Это очень важно учитывать при приготовлении физиологических растворов. Осмотические свойства тканей следует учитывать также и в медицине при внутривенных вливаниях лекарств. Вводимый раствор не должен быть токсичным, а кроме того, необходимо, чтобы его осмотическое давление было таким же, как у кровяной плазмы, иначе говоря, вводимый раствор должен иметь такое же осмотическое давление. Например, так называемый физиологический раствор, который можно вводить человеку внутривенно в больших количествах, является изотоническим раствором хлорида натрия. При приготовлении физиологических растворов необходимо учитывать их осмотические свойства. Роль осмотических явлений в различных физиологических процессах чрезвычайно велика. Постоянство осмотического давления (изоосмия) тех или иных физиологических сред (плазма, внутриклеточная жидкость, моча и т.д.) представляют собой фундаментальное физико-химическое требование гомеостаза. Осмотическое давление плазмы крови человека составляет около 8 атмосфер, у рыб ≈ 15, у отдельных растений может достигать 100, а у прорастающих семян – до 400 атмосфер. Столь высокие значения осмотического давления достигаются за счёт суммарного эффекта растворённых неорганических веществ. В плазме наиболее значимым компонентом является NaCl. На долю ВМС – белков – приходится незначительная часть от общего давления, называемая онкотическим давлением. Величина онкотического давления крови, вызываемого альбуминами и глобулинами, составляет 0,03 – 0,04 атм. Однако эта незначительная составляющая от общего осмотического давления играет принципиальную роль в некоторых физиологических процессах. Осмотический метод применим также для определения молекулярной массы высокомолекулярных соединений. Зависимость осмотического давления растворённого вещества от его концентрации описывается соотношением πосм= gRT/M + A∙g2 или πосм/g = RT/M + A∙g где g – масса вещества в граммах, М – молярная масса полимера. Для электролитов, в растворах которых при диссоциации молекул увеличивается число частиц, Вант-Гофф предложил использовать изотонический коэффициент i, который учитывает изменение числа частиц в растворе. Физический смысл этого коэффициента следующий: i = число всех частиц в растворе / число исходных частиц Для растворов неэлектролитов i = 1, а для растворов электролитов вследствие диссоциации их молекул i > 1: Электролит NaCl CaCl2 Na3PO4 I(максим.) = 2 3 4 Если в растворе идёт процесс ассоциации частиц, то i < 1. Для растворов электролитов формулу Вант-Гоффа записывают так: πосм= iCRT. Если у двух растворов осмотическое давление одинаковое, то эти растворы называются изотоническими и между ними происходит подлинно равновесный обмен молекулами растворителя. Если в контакте два раствора с разными πосм, то раствор с большим πосм называют гипертоническим, а с меньшим πосм - называют гипотоничсеским. Гипертонический раствор будет всасывать растворитель из гипотонического вследствие стремления к выравниванию концентрации веществ за счёт перераспределения растворителя между этими растворами. Осмотическая ячейка – это система, отделённая от окружающей среды мембраной с избирательной проницаемостью. Все клетки живых существ – осмотические ячейки. Явление движения растворителя из окружающей среды в осмотическую ячейку называют эндосмосом. Условия эндосмоса: Свнутр. > Снаруж.; πосм(внутр.) > πосм(наруж.). В результате эндосмоса вода диффундирует в клетку, происходит набухание клетки с появлением напряженного состояния клетки, называемого тургор. В растительном мире тургор помогает растению сохранять вертикальное положение и определённую форму. Если разница в концентрациях наружного и внутреннего раствора достаточно велика, а прочность оболочки клетки небольшая, то эндосмос приводит к разрушению клеточной мембраны и лизису клетки. (Напомним, что лизис это разрушение, распад, растворение клеток). Эндосмос является причиной гемолиза (гематолиза) – разрушения эритроцитов крови с выделением в окружающую среду гемоглобина. В норме гемолиз завершает жизненный цикл эритроцитов (приблизительно 125 суток) и происходит в организме человека и животных непрерывно. Патологический гемолиз происходит под влиянием гемолитических ядов, холода, некоторых лекарственных веществ и других факторов. Кроме эндосмоса возможен экзосмос: экзосмос – это движение растворителя из осмотической ячейки в окружающую среду. Условия экзосмоса: Снаруж.> Свнутр.; πосм(наруж.) > πосм(внутр.). В результате экзосмоса вода диффундирует из клетки в плазму и происходит сжатие и сморщивание оболочки клетки, называемое плазмолизом. Экзосмос имеет место, если клетка оказывается в гипертонической среде. Явление экзосмоса наблюдается, например, при посыпании ягод или фруктов сахаром, а овощей, мяса, рыбы – солью. При этом происходит консервирование продуктов питания благодаря уничтожению микроорганизмов вследствие их плазмолиза. Любое нарушение осмотического давления в тканях вызывает различные заболевания (так, например, отёки связаны с нарушением осморегуляции). Временные нарушения осмотических свойств тканей вызывают различные физиологические ощущения. Например, чувство жажды, возникающее после приёма большого количества солёной пищи, связано с тем, что при этом возрастает содержание солей в клеточном соке организма. Потребность организма в воде для уменьшения осмотического давления тканевых растворов проявляется в виде чувства жажды. Известно, что в период сильной жары туристам и солдатам во время походов, а также рабочим горячих цехов дают солёное питьё (а ещё лучше поваренную соль). Этот, на первый взгляд, парадокс объясняется весьма просто. При сильной жаре с потом из организма удаляется значительное количество солей. Поскольку содержание солей в поте выше, чем в клеточном соке тканей человека, это приводит к нарушению осморегуляции, и осмотическое давление тканей становится ниже нормального. Однако организм на любое отклонение (как на повышение, так и на понижение осмотического давления) отвечает одинаковой реакцией – чувством жажды. Человек пьёт воду, но она только усиливает жажду. Чтобы избавиться от жажды, надо увеличить осмотическое давление тканей, то есть ввести в них не воду, а дополнительное количество солей. Основную задачу осморегуляции выполняют почки. Осмотическое давление мочи в норме значительно выше, чем плазмы крови, что обеспечивает активный транспорт из крови в почку. Осморегуляция осуществляется под контролем ферментативных счистем. Нарушение их деятельности приводит к патологическим процессам. Так, например, при нефрите осмотическое давление у мочи может оказаться ниже, чем у крови, что вызовет обратный транспорт веществ.
|
||||
Последнее изменение этой страницы: 2016-12-27; просмотров: 544; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.79.214 (0.009 с.) |