Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Биогеохимический круговорот углерода в биосфере и вмешательство в него человека.Содержание книги
Поиск на нашем сайте
Круговороты газообразных веществ Круговороты газообразных веществ, в кото-рых участвуют, например, углекислый газ, азот, кислород, благодаря наличию крупных атмосферных или океанических (или тех и других) фондов достаточно быстро компенсируют возникающие нарушения. Например, избыток С02, обсуловленный интенсивным окислением, горением или промышленными выбросами в каком-либо районе, обычно быстро рассеивается с воздушными потоками. Кроме того, излишки С02 компенсируются усиленным фотосинтезом и превращением их в гидрокарбонаты в море: С02 + + Н20 + СаСОэ -> Са(НСОэ)2. Таким образом, круговороты газообразных веществ с большими резервными фондами имеют мощные буферные системы в глобальном масштабе и хорошо приспособлены к изменениям. Однако способность к саморегуляции даже при таком резервном фонде, как атмосфера и океан, конечно, не беспредельна. Биогеохимические циклы углерода и азота - примеры круговоротов наиболее важных газообразных биогенных веществ. Н Круговорот углерода. Сейчас запасы углерода в атмосфере в виде С02 относительно невелики в сравнении с его запасами в океанах и земной коре (в виде ископаемого топлива). Вспомним, как образовалась современная земная атмосфера с низким содержанием углекислого газа и высоким содержанием кислорода. Когда более 2 млрд лет назад появилась жизнь, атмосфера Земли, подобно современной атмосфере Юпитера и других планет, состояла из вулканических газов. В ней было много С02 и мало (или ■совсем не было) кислорода. Первые организмы были анаэробными, т. е. жили в отсутствие кислорода. В результате того что первичная продукция в среднем превышала расходы органических веществ на дыхание, в атмосфере стал появляться 02. Накопление кислорода началось с докембрия, и к началу палеозоя его содержание в атмосфере не превышало 10 % от современного. В дальнейшем оно подвергалось значительным флуктуациям, но неуклонно росло. Предполагают, что в истории Земли были периоды, когда концентрация кислорода превышала современную. Сейчас наличный запас свободного кислорода оценивается приблизительно в 1,6-1015 т. Современные зеленые растения могут воссоздать такое количество за 10 000 лет. Накоплению кислорода, по-видимому, способствовали также геологические и физико-химические процессы: высвобождение его из оксидов железа, восстановление кислородсодержащих соединений азота, расщепление воды ультрафиолетовыми лучами и др. Содержание же С02 до мелового периода в 6 - 10 раз превышало современный уровень, а затем неуклонно падало. Циркуляция углерода в биосфере основана на поступлении С02 в атмосферу и его потреблении. в современных условиях происходит в результате: 1) дыхания всех организмов; 2) минерализации органических веществ; 3) выделения по трещинам земной коры из осадочных пород (имеют также биогенное происхождение); 4) выделения из мантии Земли при вулканических извержениях (незначительная часть - до 0,01 %); и 5) сжигания топлива. происходит главным образом: 1) в процессе фотосинтеза; 2) в реакциях его с карбонатами в океане; 3) при выветривании горных пород (рис. 4.4). Низкое содержание С02 и высокие концентрации 02 в атмосфере сейчас служат лимитирующими факторами для фотосинтеза, а зеленые растения являются регуляторами этих газов. Таким образом, «зеленый пояс» Земли и карбонатная система океана поддерживают относительно постоянное содержание С02 в атмосфере. Полагают, что до наступления индустриальной эры потоки углерода между атмосферой, материками и океанами были сбалансированы. проявилось в том, что с развитием индустрии и сельского хозяйства поступление С02 в атмосферу стало расти за счет антропогенных источников. Основная масса углерода находится в земной коре в связанном состоянии. Важнейшие минералы углерода - карбонаты, количество углерода в них оценивается в 9,61015 т. Разведанные запасы горючих ископаемых (угли, нефть, битумы, торф, сланцы, газы) содержат около 11013 т углерода. Главной причине увеличения содержания СО2 в атмосфе-это сжигание горючих ископаемых однако свой вклад вносят и транспорт и вырубка лесов. Сельское хозяйство также приводит к потере углерода в почве, так как фиксация С02 из атмосферы агрокультурами в течение лишь части года не компенсирует полностью высвобождающийся из почвы углерод, который теряется при окислении гумушЛрезультат частой вспашки). При уничтожении лесов содержание углекислого газа в атмосфере увеличивается при непосредственном сжигании древесины, за счет снижения фотосинтеза и при окислении гумуса почвы (если на месте лесов распахивают поля или строят города). Леса - важные накопители углерода: в биомассе лесов приблизительно в 1,5, а в лесном гумусе - в 4 раза больше углерода, чем в атмосфере. Современное изменение ландшафта человеком заметно повлияло на поток углерода из резервного фонда в обменный. Можно представить, какое огромное количество С02 выделится, если будет сожжена хотя бы половина фонда горючих ископаемых. Одновременное уменьшение поглотительной способности «зеленого пояса» может привести к сбою механизмов саморегуляции и природного контроля. Содержание С02 в атмосфере уже сейчас начинает возрастать. В начале промышленной революции, примерно в 1 800 г., в атмосфере Земли содержалось около 290 частей С02 на миллион (0,029 %). В 1958 г. содержание С02 составляло 0,0315 %, а в 1980 г. выросло до 0,0335 %. Если содержание углекислого газа в атмосфере вдвое превысит доиндустриальный уровень (приблизится к 0,06 %), что может произойти в конце следующего столетия, то вероятно потепление климата на 1,5 -4,5 °С. Наряду с подъемом уровня моря (в этом веке он ужеподнялся примерно на 12 см) и перераспределением осадков, эти изменения могут привести к затоплению прибрежных районов. Так называемые проблемы С02 («парниковый эффект») должны учитываться при планировании национальной и международной энергетической и экономической политики. Правда, предполагают, что в следующем веке может установиться новое (но ненадежное) равновесие между увеличением количества С02 и запыленностью атмосферы частицами, отражающими тепловое излучение. Но любое результирующее изменение теплового бюджета Земли все равно повлияет на климат. Кроме С02, в атмосфере присутствуют в небольших количествах еще два углеродных соединения: оксид углерода СО (около 0,1 млн1) и метан СН4 (около 1,6 млн1). Как и С02, они находятся в быстром круговороте: время пребывания в атмосфере СО - около 0,1 года, для СН4 - 3,6 года, а для С02 - 4 года. В естественных условиях СО и СН4 образуются при неполном анаэробном разложении органических веществ и в атмосфере окисляются до С02. Количество СО, попадающего в атмосферу при сгорании топлива, особенно с выхлопными газами, равно его естественному поступлению. Оксид углерода - смертельный яд для человека. В глобальном масштабе его количество не представляет угрозы, но в городах концентрация этого газа достигает 100 млн', т. е. в 1000 раз больше естественного содержания, и становится угрожающей, особенно в районах с сильным автомобильным движением. Для сравнения приведем такие данные: курильщик (пачка сигарет в день) получает столько СО, сколько он получил бы, дыша воздухом с содержанием СО 400 млн"1. Это уменьшает содержание оксигемо-глобина в его крови на 3 % и приводит к анемии и другим Заболеваниям, связанным с гипоксией (гр. hypo - низкое, ох/ - кислород): ишемической болезни, стенокардии, другим сердечно-сосудистым заболеваниям. Следовательно, вдыхание СО в насыщенных автотранспортом городах сопоставимо с его количеством, поступающим в кровь при курении табака
|
||||
Последнее изменение этой страницы: 2016-12-12; просмотров: 240; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.214.43 (0.007 с.) |