Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Первые разработки АТС с программным управлениемСодержание книги
Поиск на нашем сайте
Справедливость приведенного в качестве эпиграфа тезиса подтверждает не только несовершенство проектов старика Хоттабыча, придуманного тем же автором, но и критический анализ различных проектов отечественных цифровых АТС. Тем не менее, миллионы школьников продолжают увлекаться приключениями литературных героев Лагина, а миллионы абонентов обслуживаются современными АТС отечественной разработки, причем обслуживаются отнюдь не хуже, чем рассмотренными в предыдущей главе импортными станциями. К первому поколению отечественных АТС с программным управлением относятся четыре системы, которые и сегодня функционируют в составе ВСС РФ. Это городские станции МТ-20, учрежденческие и сельские АТС КВАНТ, междугородные станции КВАРЦ и сельские - ИСТОК. О каждой из них в свое время, все же, что-то было написано, поэтому, прежде всего, хотелось бы сказать несколько слов о менее известном, но чрезвычайно интересном проекте импульсно-временного транзитного узла (ИВТУ) - первого цифрового коммутационного узла с программным управлением, включенного в отечественную ТфОП. Его разработка выполнялась с начала 60-х годов, почти в то же время, что и разработка прототипов основных импортных платформ, рассмотренных в предыдущей главе. В 1966 г. в Берлине (ГДР) была сдана в опытную эксплуатацию первая экспериментальная отечественная АТС, в 1972 г., также в содружестве со странами СЭВ, были завершены работы по экспериментальному комплексу ИЦСС (интегральной цифровой системы связи). Логическим продолжением этих работ стал импульсно-временной транзитный узел ИВТУдля городских сетей с узлообразованием, управляемый вычислительным комплексом типа «Нева». Экспериментальный импульсно-временной транзитный узел МВТУ был первой полностью электронной цифровой станцией с программным управлением, включенной в нашей стране в действующую телефонную сеть. ИВТУ обеспечил взаимодействие координатных и декадно-шаговых АТС с электронным узлом с устранением помех, приходящих по сигнальным каналам от электромеханических станций, программную поддержку заданных показателей качества обслуживания, обработку статистики и ряд других, принципиально новых для того времени функций. Узел состоит из двух частей: коммутационного оборудования и управляющего комплекса «Нева», разработанного под руководством В.И. Шляпоберского в двух вариантах. Компактный вариант комплекса, «Нева-2» с микропрограммным управлением, разрабатывался в Москве под руководством Б.А. Лопусова, а высокопроизводительная ЭУМ типа «Нева-1» с аппаратной реализацией управления центральным процессором - в Институте кибернетики АН УССР им. В. М. Глушкова. Машины «Нева» производились в Германии (ГДР) и имели характеристики, приведенные в таблице 6.1. Как видно из этой таблицы, машины того времени были, по сегодняшним меркам, примитивными, а технология программирования и само программное обеспечение были вообще «неандертальскими». Именно поэтому разработка ИВТУ заняла гораздо больше времени, чем ожидалось. Это произошло, отчасти, из-за проблем, связанных с новыми технологиями, но главным образом потому, что трудоемкость программирования сильно недооценили. Такая же недооценка имела место и во всех других больших программных проектах телефонных станций того времени - первая система 1 ESS, например, была установлена в Суссанне, штат Нью Джерси, в 1965 году, а приемлемо работающая версия программного обеспечения для нее реально появилась только через год. Спустя тридцать лет мы все еще не вполне оцениваем огромные усилия, которые придется затратить на составление программ, - можете себе представить, как слабо их оценивали тогда, когда составлялись первые программы. Об этом мы еще поговорим в главе 9, посвященной программному управлению. В состав коммутационного оборудования (рис. 6.1) входили: коммутационное поле пространственно-временного типа ПВКС, имевшее небольшую, по сегодняшним меркам, емкость до 200 трактов Е1, оперативные запоминающие устройства пространственной и временной частей коммутационного поля ОЗУКС, комплекты КСТ сопряжения с цифровыми трактами, комплекты КПЛС приема и передачи линейных сигналов для взаимодействия узла с декадно-шаговыми и координатными станциями, комплекты КППСУ приема и передачи многочастотных сигналов управления кодом «2 из 6», устройства УСПУС сопряжения коммутационного оборудования с управляющим комплексом, периферийные устройства управления ПУУ, входящие в состав перечисленных выше блоков, а также устройства УК контроля всех блоков коммутационного оборудования; общестанционный импульсный генератор ОИГ, блоки вторичного электропитания БП и пульт оператора для выполнения эксплуатационных процедур. Пространственно-временное коммутационное поле включало в себя блоки пространственной коммутации БПК емкостью 15x15 трактов Е1, соединенные в трехкаскадную схему (рис. 6.2). В блоках пространственной коммутации предусматривалось дополнительное временное уплотнение, позволявшее использовать один и тот же физический блок во всех трех (I, II и III) каскадах БПК. Блок (блоки) временной коммутации подключались к блокам пространственной коммутации по «петлевому» принципу. Количество временных коммутаторов ВК, включаемых в блок, зависело от интенсивности и характера нагрузки и определялось расчетным путем по заданной вероятности потерь. Рис. 6.2 Пространственно-временное коммутационное поле ИВТУ Принцип работы блока временной коммутации поясняет рис. 6.3. Для соединения абонента А, передающего и принимающего информацию по каналу с номером / (на рисунке принято /=5), с абонентом Б, которому предоставлен другой канал с номером/(на рисунке принято/=10), информация, передаваемая от абонента А к абоненту Б, переводится с помощью ВК из канала / в канал/ (т.е. из КИ5 в КИ10), а информация, передаваемая в обратном направлении, переводится из канала/ в канал / (т.е. из КИ10 в КИ5). Общестанционный импульсный генератор ОИГ обращается в ЗУ СС циклически в порядке следования канальных интервалов, т.е. считывает и записывает информацию в десятую строку ЗУ СС только в интервалах КИ10. К этой строке ОЗУ ВК обращается в произвольном временном интервале, который указан в управляющем слове, поступившем от ЭУМ. В рассматриваемом на рисунке примере обращение к десятой строке ЗУ СС производится в интервалах КИ5. Смена информации должна происходить достаточно быстро, без потери канального интервала, для чего сначала производится считывание информации из строки ЗУ СС, а потом, в этом же интервале, - запись новой информации. Таким образом, в рассматриваемом примере информация абонента А хранится в ЗУ СС в каждом цикле в интервалах с 5 по 10, а информация абонента Б - в интервалах с 10 по 5. Фактически запись и считывание проводятся со сдвигом на один канальный интервал для компенсации задержки в преобразователях кода. Описанный способ организации временнбго коммутатора позволяет управлять соединением, занимая одну строку в ОЗУ ВК и одну строку ЗУ СС. Рис. 6.3 Временная коммутация в ИВТУ
|
||||
Последнее изменение этой страницы: 2016-12-11; просмотров: 594; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.227.3 (0.007 с.) |