Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Исследование полупроводникового диодаСодержание книги
Поиск на нашем сайте
1. Цель работы: Изучить физические явления и основные закономерности определяющие свойства р-п перехода. Снять вольт- амперную характе-ристику диода.
2. Теоретическая часть Для описания электрических свойств полупроводниковых материалов сле-дует исходить из следующих положений: – проводимость полупроводников растет с увеличением температуры (напомним, что у металлов она уменьшается); –имеются различные зоны энергии для носителей тока– электродов. Согласно квантовой теории энергия электронов в любом кристаллическом теле может принимать лишь дискретные значения, называемые уровнями энергии. Согласно принципу запрета Паули в любой квантовой системе (атоме, молекуле, кристалле) на каждом энергетическом уровне может находиться не более двух электронов с противоположенными спинами. Разрешенные значения энергии электронов в кристалле объединяются в зоны, разделенные промежутками, в которых разрешенных значений энергии нет. В зависимости от структуры этих зон все кристаллические тела подразделяются на проводники (металлы), полупроводники и изоляторы (диэлектрики). Схематически расположение и структуру зон можно изобразить следующим образом (при Т = 0). Существуют собственные и примесные полупроводники. К собственным относятся химически чистые полупроводники (кремний, германий), а к при-месным –полупроводники, в которые искусственно введены примеси, например, в германий – фосфор, в кремний – бор. Рис.1 Схема расположения и структура зон В собственном полупроводнике при абсолютном нуле все уровни валентной зоны полностью заполнены электронами, а в зоне проводимости электроны отсутствуют (рис.2,а). При температурах, отличных от абсолютного нуля, часть электронов с верхних уровней валентной зоны переходят в результате теплового возбуждения на нижние уровни зоны проводимости (рис.2,б). При этом в зоне проводимости появляется некоторое число свободных электронов. Свободные от электронов места в валентной зоне, несущие положительный избыточный заряд + е(е – заряд электрона) называются дырками. Возможные перемещения валентных электронов, последовательно замещающих друг друга, вызывают движение дырок. Рис.2 Схема энергетических зон собственного полупроводника. Таким образом, электрический ток в полупроводнике возникает в резуль-тате движения двух типов носителей заряда – дырок (–). Такая проводимость называется собственной и наблюдается в чистых полупроводниковых кристаллах (где нет атомов примеси) при достаточно высоких температурах. В реальных полупроводниках в узлах кристаллической решетки всегда существуют атомы примесей. При наличии электрически активных примесей возникает примесная проводимость. Различают два основных вида электрически активных примесей: 1 – донорные примеси, поставляющие электроны в зону проводимости; 2 – акцепторные, забирающие электроны из валентной зоны и способствующие образованию дырок. Уровни энергии донорной примеси должны находиться вблизи зоны проводимости (рис.3.а), так как валентный электрон легко отщепляется от атома примеси. Рис.3. Схема энергетических зон примесного полупроводника.ЕF – уровень энергии Ферми. В этом случае появление свободного электрона в зоне проводимости не сопровождается образованием дырки в валентной зоне. Уровни энергии акцеп-торной примеси находятся вблизи валентной зоны (рис.3б). Электрону из валентной зоны энергетически выгоднее перейти на акцепторный уровень. Такой переход отвечает образованию дырки без возникновения электрона в зоне проводимости. Если в полупроводнике находятся только донорные примеси, то проводимость является электронной и он принадлежит к n – типу (от слова nеqativ – отрицательный) в случае присутствия только акцепторных примесей проводимость называется дырочной и обозначается как р – тип (от слова роsίtίv – положительный). Чтобы получить нужный уровень n – или р –тип проводимости на практике в полупроводниковый материал вводят заданное количество атомов электрически активных примесей. Рассмотрим контакт одного и того же полупроводникового материала р – и n – типа проводимости с однородным распределением примеси в р – и n – областях. Такой переход с резким изменением концентрации примесей будем называть р – n переходом. Он представляет собой тонкий слой на границе между двумя областями одного и того же кристалла, отличающимися типом примесной проводимости. Вследствие диффузного перемещения подвижных носителей, обусловлен-ного хаотическим движением и наличием градиентов концентрации, электроны будут перемешаться из n – области в р – область перехода, а дырки в обратном направлении. В результате ухода электронов в приконтактной области n – типа остается некомпенсированный положительный заряд ионизированных донорных атомов. Аналогично этому по мере ухода дырочек из р – области у границы раздела возникает нескомпенсированный отрицательный зард, ионизированных акцепторных атомов. Образующаяся при этом обедненная подвижными носителями тока (электронами и дырками) область двойного объемного заряда получила название запирающего, или обедненного слоя (рис.4). Рис.4. Схематическое изображение р – n– перехода. Ширина этого слоя зависит от концентрации примесей (концентрации р и n), контактной разности потенциалов φк и напряжения V, приложенного к р - переходу. С увеличением положительного напряжения ширина запирающего слоя уменьшается и увеличивается при отрицательном обратном напряжении. Чем меньше концентрация примесей концентрация носителей тока в полупроводнике, тем тоньше слой объемного заряда. Толщина области р – n перехода может быть порядка 10-6 – 10-4 см. Общий ток через переход равен сумме дырочного и электронного токов через границу запирающего слоя. (1) где Др и Дn – коэффициент диффузии соответственно дырок и электронов; јn, јp –‘электронный и дырочный токи, соответственно; е – заряд электрона. Диффузный ток протекает до тех пор, пока на границе р – n перехода не установится определенная контактная разность потенциалов (электрическое поле в месте контакта, которое препятствует переходу электронов из полупроводника n–типа в р –область). Таким образом, устанавливается равновесие между носителями тока при некотором значении напряжения на р – n – переходе, например, для полупроводникового материала – германия контактная разность потенциалов φк ≈ 0,4 -0,5 В при Т= 300К и равенстве концентраций электронов и дырок. В общем случае контактная разность потенциалов φк возникает, если работа выхода электронов у соприкасающихся тел различна и выражается в виде разностей работ выхода. Работа выхода электронов из полупроводника n– типа всегда меньше, чем в материале р –типа. Особенности прохождения электрического тока через р – n переход связаны с тем, что на границе областей с различными типами проводимости существует потенциальный барьер для движения носителей тока в определенном направлении. Активной областью полупроводникового диода, обладающего выпрямляющими свойствами, является р – n – переход, который пропускает большой ток в прямом направлении от р – области к n – области и малый в обратном направлении, когда напряжение приложено плюсом к n, а минусом к р – области. Решая уравнение непрерывности с учетом выражения (12) можно получить формулу для вольт - амперной характеристики полупроводникового диода в виде , (2) где Js–ток насыщения; е – заряд электрона; k – постоянная Больцмана; Т – температура; U – напряжение на диоде Выражение (2) описывает вольт-амперную характеристику (ВАХ) идеаль-ного диода (рис.5), то есть без учета процессов, протекающих в самом запира-ющем слое, явлений на поверхности кристаллов, краевых эффектов. С ростом напряженности на диоде (на р – n– переходе) зависимость тока от напряжения становится почти линейной. Путем экстраполяции этой зависимости к малым токам определим падение напряжения на р – n переходе U отс (напряже-ние отсечки), которое приблизительно равно контактной разности потенциалов φк. Рис.5. Вольт- амперная характеристика полупроводникового диода. При отрицательном напряжении как следует из выражения (2), когда << 1, ток стремится к насыщению (J=Js). Неодинаковость сопротивления в прямом и обратном направлении позволяет использовать р – nереход для выпрямления переменного тока. Промышленностью выпускаются селеновые, германиевые и кремниевые диоды.
Экспериментальная часть ОПИСАНИЕ УСТАНОВКИ Вольт – амперную характеристику (ВАХ) диодов снимать на установке, схема которой приведена на рисунке 6. Установка включает в себя источник постоянного тока КПТ на 30 В, реостат (R1) на 1000Ом; ограничительное сопротивление R2 на 150 Ом; полупроводниковый диод Д типа Д305, вольтметр V с пределами измерения 0-30 В, миллиамперметр (МА) с пределами измерения 0-200мА, и миллиамперметр с пределами измерения 0-50-100мкА. Обратная ветвь В-А характеристики снимается на той же установке путем замены мА на мкА и изменением полярности диода. Рис.6. Схема установки для снятия вольт-амперной характеристики полупроводникового диода. ВЫПОЛНЕНИЕ РАБОТЫ 1. Снять ВАХ исследуемого диода, для чего: а) установить на измерительных приборах пределы, соответствующие измеряемым величинам; б) регулятором напряжения (реостатом) установить нулевое значение напряжения; в) снять зависимость J = f (V) диода в прямом направлении измерения про-вести при токах в пределах (0-200) мА, фиксируя значение напряжения. Количество измерений не менее 8-10. Результаты занести в таблицу. г) снять зависимость J = f (V)диода в обратном направлении. Измерения провести в интервале напряжений – (0-25) В, фиксируя значение тока. Результаты занести в таблицу. Таблица
2.По результатам измерений построить вольт-амперную характеристику на миллиметровой бумаге, откладывая по горизонтальной оси напряжение, а на вертикальной – ток. 3.По вольт-амперной характеристике оценить контактную разность потенциалов φк и значение тока насыщения Js. Результаты записать в тетради.
КОНТРОЛЬНЫЕ ВОПРОСЫ 1. Цель и производство работы. 2. Элементы зонной теории твердых тел. Распределение электронов по энерге-тическим зонам. Валентная зона проводимости. 3. Электронная и дырочная проводимости полупроводников, механизм соб-ственной проводимости. 4. Зонная теория примесной проводимости. 5. Контакт электронного дырочного полупроводников (р – п - переход) его вольт –амперная характеристика. 6. Электрические схемы выпрямителей переменного тока на полупровод-никовых диодах, их характеристики.
Работа № 11
|
||||||||||||||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 231; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.148.105.152 (0.007 с.) |