Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Щелочноземельные элементы. Получение металлических кальция, стронция, бария, их физические и химические свойства. Оксиды, гидроксиды, гидриды щелочноземельных элементов. Гашеная и негашеная известь.Содержание книги
Поиск на нашем сайте
Щелочноземельные металлы - кальций, стронций, барий, радий. Встречаются в природе только в виде соединений - силикатов, алюмосиликатов, карбонатов, фосфатов, сульфатов и т.д. Барий получают восстановлением оксида: 3BaO + 2Al → 3Ba + Al2O3 Остальные металлы получают электролизом расплавов хлоридов: Т.к. металлы данной подгруппы сильные восстановители, то получение возможно только путем электролиза расплавов солей. В случае Са обычно используют CaCl2 (c добавкой CaF2 для снижения температуры плавления) CaCl2=Ca+Cl2↑. Все щёлочноземельные металлы — серые, твёрдые при комнатной температуре вещества. В отличие от щелочных металлов, они существенно более твёрдые, и ножом преимущественно не режутся (исключение — стронций). Плотность щёлочноземельных металлов с порядковым номером растёт, хотя явно рост наблюдается, только начиная с кальция, который самый лёгкий из них (ρ = 1,55 г/см³), самый тяжёлый — радий, плотность которого примерно равна плотности железа. Щёлочноземельные металлы имеют электронную конфигурацию внешнего энергетического уровня ns², и являются s-элементами, наряду с щелочными металлами. Имея два валентных электрона, щёлочноземельные металлы легко их отдают, и во всех соединениях имеют степень окисления +2 (очень редко +1). Химическая активность щёлочноземельных металлов растёт с ростом порядкового номера. 1. Реакция с водой. В обычных условиях поверхность Be и Mg покрыты инертной оксидной пленкой, поэтому они устойчивы по отношению к воде. В отличие от них Ca, Sr и Ba растворяются в воде с образованием гидроксидов, которые являются сильными основаниями: Ве + H2O → ВеO+ H2 Ca + 2H2O → Ca(OH)2 + H2 2. Реакция с кислородом. Все металлы образуют оксиды RO, барий образует пероксид – BaO2: 2Mg + O2 → 2MgO Ba + O2 → BaO2 3. С другими неметаллами образуются бинарные соединения: Be + Cl2 → BeCl2 (галогениды) Ba + S → BaS (сульфиды) 3Mg + N2 → Mg3N2 (нитриды) Ca + H2 → CaH2 (гидриды) Ca + 2C → CaC2 (карбиды) 3Ba + 2P → Ba3P2 (фосфиды) Бериллий и магний сравнительно медленно реагируют с неметаллами. 4. Все металлы растворяются в кислотах: Сa + 2HCl → CaCl2 + H2 Mg + H2SO4(разб.) → MgSO4 + H2 5. Качественная реакция на катионы щелочноземельных металлов – окрашивание пламени в следующие цвета: Ca2+ - темно-оранжевый Sr2+- темно-красный Ba2+ - светло-зеленый. Катион Ba2+ обычно открывают обменной реакцией с серной кислотой или ее солями: BaCl2 + H2SO4 → BaSO4↓ + 2HCl Ba2+ + SO42- → BaSO4↓ Оксиды щелочноземельных металлов. Получение 1) Окисление металлов (кроме Ba, который образует пероксид) 2) Термическое разложение нитратов или карбонатов: CaCO3 → CaO + CO2 2Mg(NO3)2→ 2MgO + 4NO2 + O2. Типичные основные оксиды. Реагируют с водой (кроме BeO и MgO), кислотными оксидами и кислотами: СаO + H2O → Са(OH)2 3CaO + P2O5 → Ca3(PO4)2 BeO + 2HNO3 → Be(NO3)2 + H2O BeO - амфотерный оксид, растворяется в щелочах: BeO + 2NaOH + H2O → Na2[Be(OH)4]. Гидроксиды щелочноземельных металлов R(OH)2 Получение Реакции щелочноземельных металлов или их оксидов с водой: Ba + 2H2O → Ba(OH)2 + H2 CaO (негашеная известь) + H2O → Ca(OH)2(гашеная известь) Химические свойства Гидроксиды R(OH)2 - белые кристаллические вещества, в воде растворимы хуже, чем гидроксиды щелочных металлов (растворимость гидроксидов уменьшается с уменьшением порядкового номера; Be(OH)2 – нерастворим в воде, растворяется в щелочах). Основность R(OH)2 увеличивается с увеличением атомного номера: Be(OH)2 – амфотерный гидроксид Mg(OH)2 – слабое основание Са(OH)2 - щелочь Остальные гидроксиды - сильные основания (щелочи). 1) Реакции с кислотными оксидами: Ca(OH)2 + СO2 → CaСO3↓ + H2O (Качественная реакция на углекислый газ) Ba(OH)2 + SO2 → BaSO3↓ + H2O 2) Реакции с кислотами: Ba(OH)2 + 2HNO3 → Ba(NO3)2 + 2H2O 3) Реакции обмена с солями: Ba(OH)2 + K2SO4 → BaSO4↓+ 2KOH Гидриды щел –зем. элементов – белые, кристаллические солеобразные вещества. Их получают непосредственно из элементов при нагревании. Температуры начала реакции Э + Н2 = ЭН2 равны 250 оС (Са), 200 оС (Sr), 150 оС (Ва). Термическая диссоциация ЭН2 начинается при 600 оС. В атмосфере водорода СаН2 не разлагается при температуре плавления (816оС). В отсутствии влаги гидриды щелочноземельных металлов устойчивы на воздухе при обычной температуре. Они не реагируют с галогенами. Однако при нагревании химическая активность ЭН2 возрастает. Они способны восстанавливать оксиды до металлов(W, Nb, Ti, Се, Zr, Ta), например 2СаН2 + ТiO2 = 2CaO + 2H2 + Ti. Реакция СаН2 с Al2O3 идет при 750оС: 3СаН2 + Al2O3 = 3СаО + 3Н2 + 2Аl, и затем: СаН2 + 2Al = CaAl2 + H2. С азотом СаН2 при 600оС реагирует по схеме: 3СаН2 + N2 = Ca3N2 +3H2. При поджигании ЭН2 они медленно сгорают: ЭН2 + О2 = Н2О + СаО. В смеси с твердыми окислителями взрывоопасны. При действии воды на ЭН2 выделяется гидроокись и водород. Эта реакция сильно экзотермична: смоченный водой на воздухе ЭН2 самовоспламеняется. С кислотами ЭН2 реагирует, например по схеме: 2HCl + CaH2 = CaCl2 + 2H2. ЭН2 применяют для получения чистого водорода, а также для определения следов воды в органических растворителях. Негашеная известь или оксид кальция. Негашеная известь широко используется в строительстве, в производстве стали для повышении сортности сульфидной руды, при изготовлении целлюлозы, для производства бумаги, для очистки питьевых и сточных вод. Дымовые газы силовых установок на угле также очищаются с помощью негашеной извести. Негашеная известь получается посредством нагрева дробленого и сортированного известняка в роторной или шахтной печи. Известняк (CaCO3) распадается на оксид кальция, т.е. негашеную известь (CaO) и двуокись углерода (CO2). Эта реакция, называемая кальцинацией, требует температуры приблизительно 1100 градусов по шкале Цельсия. В роторной печи процесс нагрева продолжается шесть часов; в шахтной печи кальцинация занимает около 24-36 часов. Негашеная известь может быть комовой, дробленой и молотой.
Погрузочно-разгрузочные операции с негашеной известью следует проводить с большой осторожностью, поскольку она химически активна. При соприкосновении с водой, происходит сильная реакция гашения с выделением тепла. Гашеная известь или гидроокись кальция. Гашеная известь используется для очистки питьевых и сточных вод, а также в металлургии и строительной промышленности. Известь гасится посредством добавления воды к негашеной извести. Оксид кальция соединяется с водой и превращается в гидроксид кальция (Ca(OH)2), т.е. в гашеную известь.
Щелочноземельные элементы: растворимые (галогениды, нитраты, ацетаты) и нерастворимые (сульфаты, карбонаты, оксалаты) соли. Изменение термической устойчивости карбонатов, сульфатов, нитратов в ряду кальций – барий. При взаимодействии с кислотами окислы и гидроокиси щелочноземельных металлов легко образуют соответствующие соли. Последние, как правило, бесцветны. Из производных обычных минеральных кислот соли с анионами Cl–, Br–, J– и NO3- – хорошо растворимы; напротив, с анионами F–, SO42–, CO32–и PO43–малорастворимы в воде. В противоположность ионам Са2+ и Sr2+ ион Ba2+ сильно ядовит. Многие соли рассматриваемых элементов находят разнообразное практическое использование. Галогениды щелочноземельных металлов по своим свойствам делятся на две довольно резко обособленные группы. К одной относятся фториды, к другой – производные остальных галоидов, Фториды почти нерастворимы не только в воде, но и в разбавленных кислотах. Кристаллогидраты для них неизвестны. Хлориды, бромиды и иодиды хорошо растворимы в воде и из растворов выделяются в виде кристаллогидратов. Азотнокислый барий кристаллизуется при обычных условиях без воды. Напротив, нитраты Са и Sr выделяются в виде кристаллогидратов. Последние легко растворимы в воде, тогда как растворимость Ва(NO3)3 и Ra(NO3)2 значительно меньше. Нитрат кальция широко применяется в качестве азотсодержащего минерального удобрения. Нитраты стронция и бария служат в пиротехнике для изготовления составов, сгорающих красным (Sr)j или зеленым (Ва) пламенем. Безводные нитраты бериллия и некоторых других металлов невозможно получить дегидратацией кристаллогидратов вследствие необратимого гидролиза. Обычно их получают из безводных хлоридов взаимодействием с диоксидом азота, образующуюся соль нитрозония разлагают в вакууме при слабом нагревании: ВеС12 + 4N204 = [N0]2[Be(N03)4] + 2NOC1 [NО]2[Be(NО3)4] = Be(NО3)2 + 4NО2 Сернокислые соли Sr и Ва кристаллизуются без воды выше 66°С в безводном состоянии выделяется из раствора и сульфат кальция, ниже указанной температуры осаждается гипс – CaSO4 ·2H2O. В воде рассматриваемые сульфаты труднорастворимы, причем по ряду Са–Ra растворимость быстро уменьшается, а их термическая устойчивость возрастает. Нагревание до 150°С обусловливает переход гипса в более бедный водой гидрат 2CaSO4 ·H2 O. При замешивании теста из порошка этого гидрата с водой (60–80% от его веса) происходит обратное присоединение последней, сопровождающееся отвердеванием всей массы вследствие ее закристаллизовывания. На этом основано применение гипса для изготовления слепков с различных предметов, а также в качестве вяжущего строительного материала. Углекислые соли щелочноземельных металлов практически нерастворимы в воде. При накаливании они отщепляют СО2 и переходят в соответствующие окиси. По ряду Са–Sr––Ва термическая устойчивость карбонатов быстро возрастает, что объясняется увеличением в этом ряду энергии кристаллической решетки. Наиболее практически важным из них является карбонат кальция. Применение отдельных природных разновидностей СаСО3 весьма различно. Известняк служит исходным сырьем для получения важнейших строительных материалов – извести и цемента. Мел используется в качестве минеральной краски, как основа составов для полировки и т. д. Мрамор является прекрасным материалом для скульптурных работ, изготовления электрических распределительных щитов и т. д. Наряду с рассмотренными выше солями для химии Са, Sr и Ва весьма важны их известные только в растворе кислые карбонаты Э(НСО3)2. Они образуются при взаимодействии растворенного в воде углекислого газа с нормальными карбонатами по схеме: ЭСО3 + СО2 + Н2 О = Э(НСО3)2 Реакция эта обратима, причем нагревание смещает ее равновесие в сторону распада бикарбоната. Довольно часто из бикарбонатов щелочноземельных металлов в природных водах содержится только Са(НСО3)2. Наличие его придает воде приятный освежающий вкус (который отсутствует у дистиллированной воды). Средний ацетат бериллия получают растворением бериллия в ледяной уксусной кислоте или нагреванием оксоацетата с ацетилхлоридом в ледяной уксусной кислоте. При переходе от бериллия к магнию склонность к гидролизу уменьшается, а соли кальция, стронция и бария с сильными кислотами вообще не гидролизуются.
|
||||
Последнее изменение этой страницы: 2016-12-10; просмотров: 1416; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.72.55 (0.01 с.) |