Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Механизм процессов массопереноса.Содержание книги
Поиск на нашем сайте
Трудности чисто теоретического анализа и расчета массопереноса обусловлены сложностью механизма переноса к границе раздела фаз и от нее путем молекулярной и турбулентной диффузии и недостаточной изученностью гидродинамических закономерностей турбулентных потоков, особенно вблизи подвижной границы раздела фаз. На рисунке 3.4. приведена схема, поясняющая процесс массопередачи между жидкостью и газом (паром) или между двумя жидкостями. Фазы движутся с некоторой скоростью друг относительно друга и разделены подвижной поверхностью раздела.
Рисунок 3.4.
Пусть перенос распределяемого вещества М (например, аммиака) происходит в условиях турбулентного движения фаз. Примем также, что вещество переходит из фазы У, где концентрация вещества М выше равновесной (смеси аммиака с воздухом), в фазу Х, например в воду. Таким образом, осуществляются процесс массоотдачи из основной массы фазы У к поверхности раздела фаз и процесс массоотдачи от поверхности раздела к основной массе фазы Х. В результате этих частных процессов, а также преодоления сопротивления переносу через самую поверхность раздела фаз (если оно имеет заметную величину) происходит процесс массопередачи — переход вещества из одной фазы в другую. Процесс массопередачи теснейшим образом связан со структурой турбулентного потока в каждой фазе. Как известно из гидродинамики, при турбулентном движении потока у твердой стенки образуется ламинарный пограничный слой. Аналогично в каждой фазе различают ядро, или основную массу фазы, и пограничный слой у границы фазы. В ядре вещество переносится преимущественно турбулентными пульсациями и концентрация распределяемого вещества, как показано на рисунке 3.4, в ядре практически постоянна. В пограничном слое происходит постепенное затухание турбулентности. Это выражается все более резким изменением концентрации по мере приближения к поверхности раздела. Непосредственно у поверхности перенос сильно замедляется, так как его скорость уже определяется скоростью молекулярной диффузии. В этой области наблюдается наиболее резкое, близкое к линейному, изменение концентрации вплоть до границы раздела фаз (рисунок 3.4). Такой характер изменения концентраций объясняется тормозящим действием сил трения между фазами и сил поверхностного натяжения на границе жидкой фазы. Таким образом, при турбулентном движении в ядре потока фазы перенос к границе раздела фаз (или в противоположном направлении) осуществляется параллельно молекулярной и турбулентной диффузией, причем основная масса вещества переносится посредством турбулентной диффузии. В пограничном же слое скорость переноса лимитируется скоростью молекулярной диффузии. Соответственно для интенсификации массопереноса желательно уменьшать толщину пограничного слоя, повышая степень турбулентности потока, например путем увеличения до некоторого предела скорости фазы. Уравнение массопередачи. Как отмечалось, процесс массопередачи включает процессы массоотдачи в пределах каждой из двух взаимодействующих фаз и, кроме того, процесс переноса распределяемого вещества через поверхность раздела фаз: (3.20)
где угр, хгр —концентрации на границе раздела соответствующих фаз; bу,bх— коэффициенты массоотдачи, выраженные соответственно через концентрации фаз У и Х; у, х - концентрациям распределяемого вещества в основной массе (ядре) фазы.
Сложность расчета процесса связана с тем, что практически невозможно измерить концентрации фаз непосредственно у границы их раздела. Учитывая это, основное уравнение массопередачи, определяющее количество М вещества, переносимого из фазы в фазу в единицу времени, выражают следующим: (3.21)
где у*, х* — равновесные концентрации в данной фазе, соответствующие концентрациям распределяемого вещества в основной массе (ядре) другой фазы; Ку,Кх— коэффициенты массопередачи, выраженные соответственно через концентрации фаз У и Х; у, х - концентрациям распределяемого вещества в основной массе (ядре) фазы.
При такой форме записи уравнения массопередачи движущая сила процесса выражается разностью между рабочей и равновесной концентрацией (или наоборот), отражающей меру отклонения системы от состояния равновесия. Коэффициент массопередачи (Ку или Кх) показывает, какое количество вещества переходит из фазы в фазу за единицу времени через единицу поверхности контакта фаз при движущей силе массопередачи, равной единице. Следует подчеркнуть, что в условно принимаемых за движущую силу разностях концентраций (у — у*) или (х* —х) величины у* и х* представляют собой фактически не существующие в потоке предельные (равновесные) концентрации, значения которых можно найти в справочниках. Концентрации фаз изменяются при их движении вдоль поверхности раздела, соответственно изменяется движущая сила массопередачи. Поэтому в уравнение массопередачи вводят величину средней движущей силы (Dуср или Dхср). Тогда уравнения (3.21) принимают вид: (3.22)
С помощью этих уравнений обычно находят поверхность контакта фаз F и по ней рассчитывают основные размеры аппарата. Для определения F необходимо предварительно рассчитать коэффициент массопередачи Ку или Кх и среднюю движущую силу. Величина М — количество вещества, переводящее из фазы в фазу в единицу времени, или нагрузка аппарата, либо задается при расчете, либо определяется из материального баланса.
|
||||
Последнее изменение этой страницы: 2016-09-20; просмотров: 1466; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.32.238 (0.009 с.) |