Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Рефлекс - основная форма нервной деятельностиСодержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Ответная реакция организма на раздражение из внешней или внутренней среды, осуществляющаяся при участии ЦНС, называется рефлексом. Путь, по которому проходит нервный импульс от рецептора до эффектора (действующий орган), называется рефлекторной дугой. В рефлекторной дуге (рис. 104) различают пять звеньев: 1) рецептор; 2) чувствительное волокно, проводящее возбуждение к центрам; 3) нервный центр, где происходит переключение возбуждения с чувствительных клеток на двигательные; 4) двигательное волокно, передающее нервные импульсы на периферию; 5) действующий орган - мышца или железа. Любое раздражение: механическое, световое, звуковое, химическое, температурное, воспринимаемое рецептором, трансформируется (преобразуется) или, как теперь принято говорить, кодируется, рецептором в нервный импульс и в таком виде по чувствительным волокнам направляется в ЦНС. Здесь эта информация перерабатывается, отбирается и передается на двигательные нервные клетки, которые посылают нервные импульсы к рабочим органам - мышцам, железам и вызывают тот или иной приспособительный акт - движение или секрецию. Во время ответной реакции возбуждаются рецепторы рабочего органа и от них в ЦНС поступают импульсы - информация о достигнутом результате. Живой организм, как любая саморегулирующаяся система, работает по принципу обратной связи. Афферентные импульсы, осуществляющие обратную связь, либо усиливают и уточняют реакцию, если она не достигла цели, либо прекращают ее. Таким образом, рефлекс осуществляется не рефлекторной дугой, а рефлекторным кольцом (П. К. Анохин); рефлекс заканчивается по достижении результата. Рефлекс обеспечивает тонкое, точное и совершенное уравновешивание организма с окружающей средой, а также контроль и регуляцию функций внутри организма. В этом его биологическое значение. Рефлекс является функциональной единицей нервной деятельности. Вся нервная деятельность складывается из рефлексов различной степени сложности, т. е. является отраженной, вызванной внешним поводом, внешним толчком. Рефлекторный принцип нервной деятельности был открыт великим французским философом, физиком и математиком Рене Декартом в XVII веке. Развитие рефлекторная теория получила в фундаментальных трудах русских ученых И. М. Сеченова и И. П. Павлова. В 1863 г. в книге "Рефлексы головного мозга" И. М. Сеченов высказал мысль, что не только спинной мозг, как полагал Декарт, но и головной мозг работает по принципу рефлекса: "...без внешнего чувственного раздражения невозможна хоть на миг психическая деятельность г ее выражение - мышечное движение". И. М. Сеченов писал: "... если выключить все рецепторы, то человек должен заснуть мертвым сном и никогда не проснуться." Это теоретическое положение нашло свое обоснование в клинической практике. С. П. Боткин наблюдал больного, у которого из всех рецепторов тела функционировали один глаз и одно ухо. Как только больному закрывали глаз и затыкали ухо, он засыпал. В опытах В. С. Галкина собаки, у которых путем операции одновременно были выключены зрительные, слуховые и обонятельные рецепторы, спали по 20 - 23 ч в сутки. Пробуждались они только под влиянием внутренних потребностей или энергичного воздействия на кожные рецепторы. Следовательно, ЦНС работает по принципу рефлекса отражения, по принципу стимул - реакция. И. П. Павлов открыл условные рефлексы - качественно новую, высшую форму нервной деятельности, свойственную головному мозгу. Он создал рефлекторную теорию в ее современном виде. Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса. Если лапку лягушки опустить в слабый раствор серной кислоты, возникнет оборонительный рефлекс - лапка отдернется. Однако если снять кожу и тем самым удалить кожные рецепторы, то серная кислота не окажет действия. То же самое можно наблюдать при разрушении любого другого звена: ЦНС, чувствительных или двигательных нервных волокон. Самое сильное раздражение не вызовет ответной реакции, нервная деятельность будет отсутствовать. Этим широко пользуются хирурги, применяя во время операции новокаин для анестезии периферических нервов или ганглиоблокатор, прерывающий проведение возбуждения в синапсах. Наркотические вещества центрального действия выключают функцию нейронов ЦНС. Время рефлекса. Время, прошедшее от момента нанесения раздражения до ответа на него, называется временем рефлекса (латентный период). Оно слагается из времени, необходимого для возбуждения рецепторов, проведения возбуждения по чувствительным волокнам, ЦНС, двигательным волокнам, и, наконец, скрытого (латентного) периода возбуждения рабочего органа. Большая часть времени уходит на проведение возбуждения через нервные центры - центральное время рефлекса. Это объясняется тем, что в синапсах ЦНС происходит замедление проведения возбуждения, так называемая синаптическая задержка. Чем меньше нейронов входит в состав рефлекторной дуги, тем короче время рефлекса. Поэтому сухожильные рефлексы, возникающие при растяжении сухожилия, имеющие двухнейронную дугу, наиболее быстрые. Их время составляет всего 19 - 23 мс, тогда как время рефлекса моргания, возникающего при раздражении глаза, равно 50 - 200 мс. Наибольшим является время вегетативных рефлексов. Время рефлекса зависит от силы раздражения и возбудимости ЦНС. При сильном раздражении оно короче, при снижении возбудимости, вызванном, например, утомлением, время рефлекса увеличивается, при повышении возбудимости значительно уменьшается. Рецептивное поле рефлекса. Каждый рефлекс можно вызвать только с определенного рецептивного поля. Анатомическая область, при раздражении которой вызывается данный рефлекс, носит название рецептивного поля рефлекса. Например, рефлекс сосания возникает при раздражении губ ребенка, рефлекс сужения зрачка - при освещении сетчатки, коленный рефлекс (разгибание голени) - при легком ударе по сухожилию ниже надколенника (рис. 105). Нервный центр. Каждый рефлекс имеет свою локализацию в ЦНС, т. е. тот ее участок, который необходим для его осуществления. Например, центр мочеиспускания находится в крестцовом отделе спинного мозга, центр коленного рефлекса - в поясничном, центр расширения зрачка - в верхнем грудном сегменте спинного мозга. При разрушении соответствующего участка рефлекс отсутствует. Однако выяснилось, что для регуляции рефлекса, его точности недостаточно первичного, или главного, центра, а необходимо участие и высших отделов ЦНС, включая кору большого мозга. Только при целостности ЦНС сохраняется совершенство нервной деятельности. Нервным центром называется совокупность нервных клеток, расположенных в различных отделах ЦНС, необходимая для осуществления рефлекса и достаточная для его регуляции. Так, если у животного удалить кору полушарий большого мозга, то дыхание сохраняется, так как первичный дыхательный центр находится в продолговатом мозге. Однако во время работы не будет точного соответствия вентиляции легких потребностям организма в кислороде, так как для тонкой регуляции деятельности дыхательного центра необходим не только ствол мозга, но и кора больших полушарий. Классификация рефлексов. Различают следующие виды рефлексов. 1. По биологическому значению рефлексы подразделяются на пищевые, оборонительные, ориентировочныеи(ознакомление с изменяющимися условиями среды), половые (продолжение рода). 2. По роду рецепторов, с которых они возникают, рефлексы делятся на экстероцептивные, возникающие с рецепторов, воспринимающих раздражения из внешней среды: световые, звуковые, вкусовые, тактильные и др.; интероцептивные, возникающие с рецепторов внутренних органов: механо-, термо-, осмо- и хеморецепторов сосудов и внутренних органов, и проприоцептивные - с рецепторов, находящихся в мышцах, сухожилиях, связках. 3. В зависимости от рабочего органа, участвующего в ответной реакции, рефлексы подразделяются на двигательные, секреторные, сосудистые. 4. По местонахождению главного нервного центра, необходимого для осуществления рефлекса, они делятся на спинальные, например мочеиспускание, дефекация; бульбарные (продолговатый мозг): кашель, чиханье, рвота; мезэнцефальные (средний мозг): выпрямление тела, ходьба; диэнцефальные (промежуточный мозг) - терморегуляторные; корковые - условные рефлексы. 5. В зависимости от продолжительности различают фазные и тонические рефлексы. Тонические рефлексы длительные, продолжаются часами, например рефлекс стояния. Любое животное может стоять часами благодаря длительному сокращению мышц. Все позные рефлексы относятся к тоническим. Они фиксируют определенное положение тела, а на их фоне разыгрываются другие, короткие, фазные рефлексы, обеспечивающие все виды рабочих, спортивных и других движений. 6. По сложности рефлексы можно разделить на простые и сложные. Расширение зрачка в ответ на затемнение глаза, разгибание ноги в ответ на легкий удар по сухожилию - это простые рефлексы. Примерами сложных рефлексов служат регуляция сердечно-сосудистой системы, процесс пищеварения. В этих случаях конец одного рефлекса служит раздражителем для возникновения другого. Возникают так называемые цепные рефлексы, протекание которых очень демонстративно можно проследить на примере процесса пищеварения. Произвольное проталкивание комка пищи к задней стенке глотки вызывает раздражение ее рецепторов - возникает рефлекс глотания. Пища попадает в пищевод и вызывает его сокращение, продвигающее пищевой комок ко входу в желудок. Раздражение нижней части пищевода приводит к открытию кардинального жома желудка и поступлению пищи в желудок, а последнее вызывает отделение желудочного сока и т. д. Весь процесс пищеварения - сложная цепь рефлексов. 7. По принципу эффекторной иннервации рефлексы можно разделить на скелетно-моторные, или соматические (обеспечивающие двигательные акты скелетной мускулатуры), и вегетативные (функции внутренних органов). 8. В зависимости от того, являются ли рефлексы врожденными или приобретенными в процессе индивидуальной жизни, И. П. Павлов подразделял их на безусловные (врожденные) и условные (приобретенные). Механизм передачи возбуждения в синапсах. Нервные клетки, образующие рефлекторные дуги, соединяются между собой посредством контактов - синапсов, в которых происходит передача возбуждения от одного нейрона к другому. Синапсы находятся на теле нервной клетки, на дендритах, у периферических окончаний аксона. На каждом нейроне тысячи синапсов, причем большинство - на дендритах (рис. 106). Синапсы по механизму передачи возбуждения разделяются на химические и электрические. Последние находятся в сердечной мышце, гладких мышцах и железистой ткани; в ЦНС наличие их только предполагается. Синапс, с химической передачей, состоит из синаптической бляшки, пресинаптической мембраны, синаптической щели шириной 30 нм и постсинаптической мембраны (рис. 107). В синаптической бляшке медиатор хранится в мелких пузырьках, которых около 3 млн. Под действием нервного импульса наступает деполяризация окончаний аксона, что вызывает повышение концентрации Ca2+ в нем, и содержимое синаптических пузырьков выбрасывается в синаптическую щель. Роль пускового механизма в выделении медиатора играет повышение концентрации Ca2+. Медиатор диффундирует через синаптическую щель и связывается с рецепторными белками постсинаптической мембраны, вызывая в ней возникновение либо возбуждающего постсинаптического потенциала (ВПСП), либо тормозного постсинаптического потенциала (ТПСП). Медиаторами, вызывающими в нейронах возбуждение, являются ацетилхолин, норадреналин, серотонин, дофамин. Торможение в нейроне вызывает тормозной медиатор - гамма-аминомасляная кислота. В электрических синапсах синаптическая щель очень узкая (1 - 2 нм), ее пересекают каналы, сквозь которые ионы легко передаются к постсинаптической мембране. Потенциал действия беспрепятственно, без задержки, проводится с одной клетки на другую. Здесь нет химического медиатора; проведение возбуждения по механизму сходно с проведением по нервному волокну. Особенности нервных центров. Характерными особенностями нервных центров, отличающими их от нервных волокон, являются быстрая утомляемость, очень высокий обмен веществ, т. е. высокая потребность в кислороде и питательных веществах, и избирательная чувствительность к некоторым ядам. Вследствие этих особенностей нарушения кровоснабжения и изменения температуры тела прежде всего сказываются на функции ЦНС: остановка кровоснабжения мозга на 20 с вызывает обморок - потерю сознания; повышение температуры тела до 40 - 42°С - бред, нарушение сознания. Реанимация возможна, если клиническая смерть (остановка сердца и дыхания) продолжалась не более 5 - 6 мин. По истечении большего срока можно восстановить деятельность сердца и даже дыхание, но орган сознания - кора больших полушарий, наиболее чувствительная к изменениям внутренней среды организма, функционировать не будет. Торможение В ЦНС одновременно с процессом возбуждения возникает процесс торможения, выключающий те нервные центры, которые могли бы мешать или препятствовать осуществлению какого-либо вида деятельности организма, например сгибанию ноги. Возбуждением называют нервный процесс, который либо вызывает деятельность органа, либо усиливает существующую. Под торможением понимают такой нервный процесс, который ослабляет либо прекращает деятельность или препятствует ее возникновению. Взаимодействие этих двух активных процессов лежит в основе нервной деятельности. Процесс торможения в ЦНС был открыт в 1862 г. И. М. Сеченовым в опытах на лягушках. Он делал поперечные разрезы головного мозга на различных уровнях и раздражал нервные центры, накладывая на разрез кристаллик поваренной соли. Оказалось, что при раздражении промежуточного мозга наступает угнетение или полное торможение спинномозговых рефлексов: лапка лягушки, погруженная в слабый раствор серной кислоты, не отдергивалась. Значительно позже английский физиолог Шеррингтон открыл, что процессы возбуждения и торможения участвуют в любом рефлекторном акте. При сокращении группы мышц тормозятся центры мышц-антагонистов. Так, при сгибании руки или ноги центры мышц-разгибателей затормаживаются. Рефлекторный акт возможен только при сопряженном, так называемом реципрокном, торможении мышц-антагонистов. При ходьбе сгибание ноги сопровождается расслаблением разгибателей и, наоборот, при разгибании тормозятся мышцы-сгибатели. Если бы этого не произошло, то возникла бы механическая борьба мышц, судороги, а не приспособительные двигательные акты. При раздражении чувствительного нерва, вызывающего сгибательный рефлекс, импульсы направляются к центрам мышц-сгибателей и через тормозные клекти Реншоу - к центрам мышц-разгибателей. В первых вызывают процесс возбуждения, а во вторых - торможения (рис. 108). В ответ возникает координированный, согласованный рефлекторный акт - сгибательный рефлекс. Понятие о доминанте. В ЦНС под влиянием тех или иных причин может возникнуть очаг повышенной возбудимости, который обладает свойством притягивать к себе возбуждения с других рефлекторных дуг и тем самым усиливать свою активность и тормозить другие нервные центры. Это явление носит название доминанты (А. А. Ухтомский). Доминанта относится к числу основных закономерностей в деятельности ЦНС. Она может возникнуть под влиянием различных причин: голода, жажды, инстинкта самосохранения или размножения. Состояние пищевой доминанты хорошо сформулировано в русской пословице: "Голодной куме все хлеб на уме". У человека причиной доминанты может быть увлеченность работой, любовь, родительский инстинкт. Если студент занят подготовкой к экзамену или читает увлекательную книгу, то посторонние шумы не мешают ему, а даже углубляют его сосредоточенность, внимание. Важным фактором координации рефлексов является наличие в ЦНС функциональной субординации, т. е. определенного соподчинения между ее отделами, возникщего в процессе длительной эволюции. Нервные центры и рецепторы головы "авангардной" части тела, прокладывающей путь организму в окружающей среде, развиваются быстрее. Высшие отделы ЦНС приобретают способность изменять активность и направление деятельности нижележащих отделов. Важно отметить: чем выше уровень животного, тем сильнее власть самых высших отделов ЦНС, тем в большей степени высший отдел является распорядителем и распределителем деятельности организма (И. П. Павлов). У человека таким "распорядителем и распределителем" является кора полушарий большого мозга. Нет функций в организме, которые бы не поддавались решающему регулирующему влиянию коры. Спинной мозг Спинной мозг (medulla spinalis) лежит в позвоночном канале и представляет собой тяж длиной 41 - 45 см (у взрослого), несколько сплющенный спереди назад (рис. 109). Вверху он непосредственно переходит в головной мозг, а внизу заканчивается заострением - мозговым конусом на уровне II поясничного позвонка. От мозгового конуса вниз отходит терминальная нить, представляющая собой атрофированную нижнюю часть спинного мозга. На 2-м месяце внутриутробной жизни спинной мозг занимает весь позвоночный канал, а затем вследствие более быстрого роста позвоночника отстает в росте и перемещается вверх. У новорожденного конец спинного мозга находится на уровне III поясничного позвонка, а у взрослого доходит лишь до II. Благодаря такому "восхождению" спинного мозга отходящие от него нервные корешки принимают косое направление.
Спинной мозг имеет два утолщения: шейное и пояснично-крестцовое, соответствующие местам выхода нервов, идущих к верхним и нижним конечностям. Передняя срединная щель и задняя срединная бороздка делят спинной мозг на две симметричные половины. Каждая половина в свою очередь имеет по две слабо выраженные продольные борозды, из которых выходят передние и задние корешки спинномозговых нервов. Этими бороздами каждая половина делится на три продольных тяжа - канатика: передний, боковой и задний. Место выхода корешков не соответствует уровню межпозвоночных отверстий, и корешки, прежде чем выйти из канала, направляются в стороны и вниз. В поясничном отделе они идут параллельно терминальной нити и образуют пучок, носящий название конского хвоста. Внутреннее строение спинного мозга. Спинной мозг состоит из серого и белого вещества (рис. 110). Серое вещество заложено внутри и со всех сторон окружено белым. В каждой из половин спинного мозга оно образует два неправильной формы вертикальных тяжа с передними и задними выступами - столбами. Столбы соединены перемычкой - центральным промежуточным веществом. В середине этого вещества имеется центральный канал, проходящий вдоль спинного мозга и содержащий спинномозговую жидкость. В грудном и верхнем поясничном отделах имеются также боковые выступы серого вещества. Таким образом, в спинном мозге различают три парных столба серого вещества: передний, боковой и задний, которые на поперечном разрезе спинного мозга носят название переднего, бокового и заднего рогов. Передний рог округлый или четырехугольный и содержит клетки, дающие начало передним (двигательным) корешкам спинномозговых нервов. Задний рог уже и длиннее, включает клетки, к которым подходят чувствительные волокна задних корешков. Боковой рог образует небольшой треугольный выступ, состоящий из клеток, относящихся к вегетативной нервной системе.
Белое вещество спинного мозга образует передний, боковой и задний канатики. Оно состоит преимущественно из продольно идущих нервных волокон, объединенных в пучки - проводящие пути. Выделяют три основных вида: 1) волокна, соединяющие участки спинного мозга на различных уровнях; 2) двигательные (нисходящие) волокна, идущие из головного мозга в спинной на соединение с клетками передних рогов; 3) чувствительные (восходящие) волокна, которые частично являются продолжением волокон задних корешков, частично отростками клеток задних рогов спинного мозга и восходят кверху, к головному мозгу. Пучки функционально однородных волокон занимают совершенно определенное положение в канатиках спинного мозга. От спинного мозга, образуясь из передних и задних корешков, отходит 31 пара смешанных спинномозговых нервов: 8 пар шейных, 12 пар грудных, 5 пар поясничных, 5 пар крестцовых и пара копчиковых. Участок спинного мозга, которому соответствует пара спинномозговых нервов, называют сегментом спинного мозга. В спинном мозге выделяют 31 сегмент. Физиология спинного мозга Спинному мозгу присущи две функции - рефлекторная и проводниковая. Как рефлекторный центр спинной мозг способен осуществлять сложные двигательные и вегетативные рефлексы. Афферентными (чувствительными) путями он связан с рецепторами, а эфферентными - со скелетной мускулатурой и всеми внутренними органами. Длинные восходящие и нисходящие пути спинного мозга соединяют двусторонней связью периферию с головным мозгом. Афферентные импульсы по проводящим путям спинного мозга приходят в головной мозг с информацией об изменениях во внешней и внутренней среде организма. По нисходящим путям импульсы от головного мозга передаются к эффекторным нейронам спинного мозга и вызывают или регулируют их деятельность. Рефлекторная функция. Нервные центры спинного мозга являются сегментарными рабочими центрами. Их нейроны непосредственно связаны с рецепторами и рабочими органами. Кроме спинного мозга, такие центры имеются в продолговатом и среднем мозге. Надсегментарные центры, например промежуточного мозга, коры полушарий большого мозга, непосредственной связи с периферией не имеют. Они управляют ею посредством сегментарных центров. Двигательные нейроны спинного мозга иннервируют все мышцы туловища, конечностей, шеи, а также дыхательные мышцы - диафрагму и межреберные мышцы. Если у лягушки перерезать на одной стороне задние корешки, а на другой передние, то лапки на стороне, где перерезаны задние корешки, лишаются чувствительности, а на противоположной стороне, где перерезаны передние корешки, окажутся парализованными. Следовательно, задние корешки спинного мозга являются чувствительными, а передние - двигательными. В опытах с перерезкой отдельных корешков было установлено, что каждый сегмент спинного мозга иннервирует три поперечных отрезка, или метамера, тела: свой собственный, один выше и один ниже. Следовательно, каждый метамер тела получает чувствительные волокна от трех корешков и, для того чтобы лишить чувствительности участок тела, необходимо перерезать три корешка (фактор надежности). Скелетные мышцы также получают двигательную иннервацию от трех соседних сегментов спинного мозга. Каждый спинальный рефлекс имеет свое рецептивное поле и свою локализацию, свой уровень. Например, центр коленного рефлекса находится во II - IV поясничных сегментах, ахиллова - в V поясничном и I - II крестцовых сегментах, подошвенного - в I - II крестцовом, центр брюшных мышц - в VIII - XII грудных сегментах. Важнейшим жизненно важным центром спинного мозга является двигательный центр диафрагмы, расположенный в III - IV шейных сегментах. Повреждение его ведет к смерти вследствие остановки дыхания. Для изучения рефлекторной функции спинного мозга приготовляют спинальное животное: лягушке, кошке или собаке делают поперечную перерезку спинного мозга ниже продолговатого. Спинальное животное в ответ на раздражение осуществляет оборонительную реакцию - сгибание или разгибание конечности, чесательный рефлекс - ритмическое сгибание конечности, проприоцептивные рефлексы. Если спинальную собаку поднять за переднюю часть туловища и слегка надавить ей на подошву задней лапки, то возникнет шагательный рефлекс: ритмическое поочередное сгибание и разгибание лап. Проводниковая функция спинного мозга. Спинной мозг выполняет проводниковую функцию за счет восходящих и нисходящих путей, проходящих в белом веществе спинного мозга. Эти пути связывают отдельные сегменты спинного мозга друг с другом, а также с головным мозгом. Помимо двигательных центров скелетной мускулатуры, в спинном мозге находится ряд симпатических и парасимпатических вегетативных центров. В боковых рогах грудного и верхних сегментах поясничного отделов спинного мозга расположены спинальные центры симпатической нервной системы, иннервирующие сердце, сосуды, потовые железы, пищеварительный тракт, скелетные мышцы, т. е. все органы и ткани организма. Именно здесь локализованы нейроны, непосредственно связанные с периферическими симпатическими ганглиями. В верхнем грудном сегменте находится симпатический центр расширения зрачка, в пяти верхних грудных сегментах - симпатические сердечные центры. В крестцовом отделе спинного мозга заложены парасимпатические центры, иннервирующие органы малого таза (рефлекторные центры мочеиспускания, дефекации, эрекции, эякуляции). Спинальный шок. Перерезка или травма спинного мозга вызывает явление, получившее название спинального шока. Спинальный шок выражается в резком падении возбудимости и угнетении деятельности всех рефлекторных центров спинного мозга, расположенных ниже места перерезки. Во время спинального шока раздражители, обычно вызывающие рефлексы, оказываются недействительными. Укол лапы не вызывает сгибательного рефлекса. В то же время деятельность центров, расположенных выше перерезки, сохраняется. Обезьяна, у которой спинной мозг был перерезан в области верхних грудных сегментов, после того как пройдет наркоз, передними лапами берет банан, чистит его, подносит ко рту и съедает. После перерезки исчезают не только скелетно-моторные рефлексы, но и вегетативные. Снижается кровяное давление, отсутствуют сосудистые рефлексы, акты дефекации и микции (мочеиспускание). Продолжительность шока различна у животных, стоящих на различных ступенях эволюционной лестницы. У лягушки шок продолжается 3 - 5 мин, у собаки - 7 - 10 дней, у обезьяны - больше 1 мес, у человека - 4 - 5 мес. Шок у человека нередко наблюдается как последствие бытовых или военных травм. Когда шок проходит, рефлексы восстанавливаются. Причиной спинального шока является выключение вышерасположенных отделов головного мозга, оказывающих на спинной мозг активирующее влияние, в котором большая роль принадлежит ретикулярной формации ствола мозга. Головной мозг Головной мозг (encephalon) располагается в полости черепа. Его верхнелатеральная поверхность выпуклая, а нижняя - основание головного мозга - уплощенная и неровная. В области основания от головного мозга отходят 12 пар черепных нервов. В головном мозге различают полушария большого мозга (новую в эволюционном развитии часть) и мозговой ствол с мозжечком (рис. 111). Масса мозга взрослого в среднем равна у мужчин 1375 г, у женщин 1245 г, у новорожденного составляет 330 - 340 г. В эмбриональном периоде и в первые годы жизни головной мозг интенсивно растет, но только к 20 годам достигает окончательной величины. Головной и спинной мозг развивается на дорсальной стороне зародыша из наружного зародышевого листка (эктодермы). В этом месте формируется нервная трубка с расширением в головном отделе зародыша. Вначале это расширение представлено тремя мозговыми пузырями: передним, средним и задним (ромбовидным). В дальнейшем передний и ромбовидный пузыри делятся и образуется пять мозговых пузырей: конечный, промежуточный, средний, задний и продолговатый (добавочный). В процессе развития стенки мозговых пузырей растут неравномерно: либо утолщаясь, либо оставаясь в отдельных участках тонкими и продавливаясь внутрь полости пузыря, участвуя в образовании сосудистых сплетений желудочков. Остатками полостей мозговых пузырей и нервной трубки являются мозговые желудочки и центральный канал спинного мозга. Из каждого мозгового пузыря развиваются определенные отделы мозга. В связи с этим в головном мозге выделяют пять основных отделов: продолговатый, задний, средний, промежуточный и конечный мозг. Продолговатый мозг Из пятого мозгового пузыря (myelencephalon) развивается продолговатый мозг (medulla oblongata). Границей между спинным и продолговатым мозгом является место выхода корешков первых шейных спинномозговых нервов. Вверху продолговатый мозг переходит в мост мозга, боковые его отделы продолжаются в нижние ножки мозжечка. На передней (вентральной) поверхности его видны два продольных возвышения - пирамиды и лежащие кнаружи от них оливы. Внутри олив имеются скопления серого вещества - ядра олив. На задней поверхности, по бокам от задней срединной борозды, тянутся тонкий и клиновидный пучки, продолжающиеся сюда из спинного мозга и заканчивающиеся на клетках одноименных ядер, образующих на поверхности тонкий и клиновидный бугорки. В продолговатом мозге находятся ядра IX и XII пар черепных (черепномозговых) нервов, которые выходят на нижней его поверхности позади оливы и между оливой и пирамидой, а также часть ядер VIII пары, сетевидная (ретикулярная) формация продолговатого мозга состоит из переплетения нервных волокон и лежащих между ними нервных клеток, образующих ядра ретикулярной формации. Белое вещество образуют длинные системы волокон, проходящие из спинного мозга или направляющиеся в спинной мозг, и короткие, связывающие ядра стволовой части головного мозга (рис. 112). Между ядрами олив располагается перекрест нервных волокон, берущих начало от клеток тонкого и клиновидного ядер. Задний мозг К заднему мозгу относятся мост и мозжечок. Он развивается из четвертого мозгового пузыря (metencephalon). Мост (pons) снизу граничит с продолговатым мозгом, сверху переходит в ножки мозга, боковые его отделы образуют средние мозжечковые ножки. В передней (базилярной) части моста располагаются скопления серого вещества - собственные ядра моста, в задней части покрышки моста лежат ядра верхней оливы, ретикулярной формации и V - VIII пар черепных нервов. Эти нервы выходят на основании мозга сбоку от моста и позади него, на границе с мозжечком и продолговатым мозгом. Белое вещество моста в его передней части представлено поперечно идущими волокнами, направляющимися в средние мозжечковые ножки. Они пронизаны мощными продольными пучками волокон пирамидных путей, образующих затем пирамиды продолговатого мозга и направляющихся в спинной мозг. В задней части моста (покрышка моста) проходят восходящие и нисходящие системы волокон (рис. 113).
|
||||||||
Последнее изменение этой страницы: 2016-09-18; просмотров: 1402; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.191.72.220 (0.026 с.) |