Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Заграждающие (режекторные) фильтрыСодержание книги
Поиск на нашем сайте
Для выборочного подавления составляющих определенных частот необходим фильтр, коэффициент передачи которого на резонансной частоте равен нулю, а для нижних и верхних частот имеет постоянное значение. Такой фильтр называется заграждающим. Для оценки избирательности введем добротность подавления сигнала Q = f р/D f, где D f – полоса частот, на краях которой коэффициент передачи падает на 3 дБ. Чем больше добротность фильтра, тем быстрее возрастает коэффициент передачи при удалении от резонансной частоты. Передаточную функцию заграждающего фильтра можно получить из передаточной функции ФНЧ с помощью преобразования в частотной области заменой:
Здесь DW= 1/ Q, как и ранее, нормированная полоса частот. В результате такого преобразования АЧХ фильтра нижних частот из области 0 < W < 1 переходит в область пропускаемых частот 0 < W < W1заграждающего фильтра. Кроме того, она зеркально отображается в логарифмическом масштабе относительно резонансной частоты. Для резонансной частоты W = 1 значение передаточной функции равно нулю. Как и в случае полосовых фильтров, при преобразовании порядок фильтра удваивается. Применив преобразование (19) к передаточной функции ФНЧ первого порядка (10), получим:
Подставив j W вместо S в выражение (20), получим частотную характеристику заграждающего фильтра. Реализация фильтров на операционных усилителях С ростом порядка фильтра его фильтрующие свойства улучшаются. На одном ОУ достаточно просто реализуется фильтр второго порядка. Для реализации фильтров нижних частот, высших частот и полосовых фильтров широкое применение нашла схема фильтра второго порядка Саллена-Ки. На рис. 17 приведен ее вариант для ФНЧ. Отрицательная обратная связь, сформированная с помощью делителя напряжения R 3, (a – 1) R 3, обеспечивает коэффициент усиления, равный a. Положительная обратная связь обусловлена наличием конденсатора С 2. Передаточная функция фильтра имеет вид:
Рис.17. Активный фильтр нижних частот второго порядка Расчет схемы существенно упрощается, если с самого начала задать некоторые дополнительные условия. Можно выбрать коэффициент усиления a = 1. Тогда (a – 1) R 3 = 0, и резистивный делитель напряжения в цепи отрицательной обратной связи можно исключить. ОУ оказывается включенным по схеме неинвертирующего повторителя. В простейшем случае он может быть даже заменен эмиттерным повторителем на составном транзисторе. При a = 1 передаточная функция фильтра принимает вид: . Считая, что емкости конденсаторов С 1 и С 2 выбраны, получим для заданных значений а 1 и b 1 (см. (13)): K 0 = 1, . Чтобы значения R 1 и R 2 были действительными, должно выполняться условие . Расчеты можно упростить, положив R 1 = R 2 = R и С 1 = С 2 = С. В этом случае для реализации фильтров различного типа необходимо изменять значение коэффициента a. Передаточная функция фильтра будет иметь вид . Отсюда с учетом формулы (13) получим , . Из последнего соотношения видно, что коэффициент a определяет добротность полюсов и не влияет на частоту среза. Величина a в этом случае определяет тип фильтра. Поменяв местами сопротивления и конденсаторы получим фильтр верхних частот (рис. 18). Его передаточная функция имеет вид: Рис. 18. Активный фильтр верхних частот второго порядка Для упрощения расчетов положим a = 1 и С 1 = С 2 = С. При этом получим следующие формулы: K беск= 1, R 1 = 2/wc Ca 1, R 2 = a 1/2wc Cb 1. Если АЧХ фильтра второго порядка оказывается недостаточно крутой, следует применять фильтр более высокого порядка. Для этого последовательно соединяют звенья, представляющие собой фильтры первого и второго порядка. В этом случае АЧХ звеньев фильтра перемножаются (в логарифмическом масштабе – складываются). Однако следует иметь в виду, что последовательное соединение, например, двух фильтров Баттерворта второго порядка, не приведет к получению фильтра Баттерворта четвертого порядка. Результирующий фильтр будет иметь другую частоту среза и другую частотную характеристику. Поэтому необходимо задавать такие коэффициенты звеньев фильтра, чтобы результат перемножения их частотных характеристик соответствовал желаемому типу фильтра. Полосовой фильтр второго порядка можно реализовать на основе схемы Саллена-Ки, как это показано на рис. 19. Передаточная функция фильтра имеет вид:
Рис. 19. Схема полосового фильтра второго порядка Приравнивая коэффициенты этого выражения к коэффициентам передаточной функции (18), получим формулы для расчета параметров фильтра: f p = 1/2p RC; K p = a/(3 – a); Q = 1/(3 – a). Недостаток схемы состоит в том, что коэффициент усиления на резонансной частоте K p и добротность Q не являются независимыми друг от друга. Достоинство схемы – ее добротность изменяется в зависимости от a, тогда как резонансная частота от коэффициента a не зависит. Активный заграждающий фильтр может быть реализован на основе двойного Т-образного моста. Хотя двойной Т-образный мост сам по себе является заграждающим фильтром, его добротность составляет только 0,25. Ее можно повысить, если мост включить в цепь обратной связи ОУ. Один из вариантов такой схемы приведен на рис. 20. Сигналы высоких и низких частот проходят через двойной Т-образный мост без изменения. Для них выходное напряжение фильтра равно a U вх. На резонансной частоте выходное напряжение равно нулю. Передаточная функция схемы на рис. 20 имеет вид: , или учитывая, что wр= 1/ RC,
С помощью этого выражения можно непосредственно определять требуемые параметры фильтра. Задав коэффициент усиления неинвертирующего усилителя равным 1, получим Q =0,5. При увеличении коэффициента усиления добротность растет и стремится к бесконечности, если a стремиться к 2. Рис. 20. Активный заграждающий фильтр с двойным Т-образным мостом
|
||||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 548; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.220.196.68 (0.005 с.) |