Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Генератор прямоугольного и треугольного напряжений↑ ⇐ ПредыдущаяСтр 8 из 8 Содержание книги
Поиск на нашем сайте
Как видно из диаграммы на рис. 33 б, в схеме мультивибратора формируется напряжение не только прямоугольной формы, но и формы, близкой к треугольной (на конденсаторе). Времязадающая RC -цепь мультивибратора выполняет приближенное интегрирование выходных прямоугольных колебаний. Заменив эту цепь интегратором на ОУ, получим генератор, на одном из выходов которого формируются прямоугольные, а на другом – треугольные колебания (рис. 35). Здесь на усилителе ОУ1 выполнен неинвертирующий триггер Шмитта, а на ОУ2 – интегратор. Рис. 35. Схема генератора прямоугольных и треугольных колебаний Интегратор интегрирует постоянное напряжение, имеющееся на выходе триггера Шмитта. Когда выходное напряжение интегратора достигает порога срабатывания триггера Шмитта, напряжение на его выходе U 1 скачком меняет свой знак. Вследствие этого напряжение на выходе интегратора начинает изменяться в противоположную сторону, пока не достигнет другого порога срабатывания триггера Шмитта. Изменяя постоянную интегрирования RC, можно перестраивать частоту формируемого напряжения в широком диапазоне. Амплитуда треугольного напряжения U 2 зависит только от установки уровня срабатывания триггера Шмитта U п, который для данной схемы включения триггера составляет U М R 1 /R 2 (U М – по- прежнему напряжение насыщения ОУ). Период колебаний генератора равен удвоенному времени, которое необходимо интегратору, чтобы его выходное напряжение изменилось от – U п до + U п. Отсюда следует, что Таким образом, частота формируемого напряжения не зависит от уровня напряжения насыщения операционного усилителя. Генераторы синусоидальных колебаний Условия возбуждения На рис. 36 показана блок-схема генератора. Усилитель усиливает входной сигнал в K U раз. При этом между выходным U вых и входным U вх напряжениями усилителя возникает фазовый сдвиг j. К выходу усилителя подключена схема частотно-зависимой обратной связи, которая может представлять собой, например, колебательный контур. При этом напряжение, используемое для осуществления обратной связи, составляет b U вых. Обозначим аргумент комплексного коэффициента звена обратной связи b символом y. Рис. 36. Блок-схема электронного генератора Условием генерации стационарных колебаний замкнутой схемой является равенство выходного напряжения схемы обратной связи и входного напряжения усилителя. Это условие записывается следующим образом: Коэффициент петлевого усиления должен, таким образом, равняться
Из последнего комплексного соотношения вытекают два вещественных:
Уравнение (41) называют условием баланса амплитуд, а (42) – условием баланса фаз. Баланс амплитуд означает, что незатухающие колебания в замкнутом контуре могут существовать только тогда, когда усилитель компенсирует потери в схеме обратной связи. Условие баланса фаз означает, что восполнение энергии в системе производится в такт ее собственным колебаниям. RC-генератор синусоидальных колебаний Простейшая схема RC -генератора синусоидальных колебаний на операционном усилителе приведена на рис. 37а. Рис. 37. RC-генератор синусоидальных колебаний В качестве звена обратной связи использован полосовой RC- фильтр, частотные характеристики которого приведены на рис. 37 б. Здесь по оси абцисс отложена относительная частота W = w RC, поэтому средняя частота равна единице. Фазовый сдвиг на средней частоте y(1)=0. Следовательно, для выполнения условия баланса фаз выход звена обратной связи должен быть подключен к неинвертирующему входу ОУ. Коэффициент усиления полосового фильтра на средней частоте |b(1)|=1/3. Для выполнения условия баланса амплитуд ОУ по неинвертирующему входу должен иметь коэффициент усиления К =3. Поэтому
В целом, цепь, подключенная к ОУ (полосовой фильтр и делитель R 1 R 2), называется мостом Вина-Робинсона. При строгом выполнении условия (43) и идеальном ОУ в схеме на рис. 37 а будут существовать незатухающие колебания с частотой f =1/2p RC. Однако амплитуда этих колебаний не будет определена. Кроме того, даже самое незначительное уменьшение R 1 по сравнению с (43) вызовет затухание колебаний. Напротив, увеличение R 1 по сравнению с (43) приведет к нарастанию амплитуды колебаний вплоть до насыщения усилителя и, как следствие, к появлению заметных нелинейных искажений формы кривой выходного напряжения генератора. Эти обстоятельства требуют использования в составе генератора системы автоматического регулирования амплитуды. В простейшем случае для этого в качестве резистора R 2 используют нелинейный элемент – микромощную лампу накаливания, динамическое сопротивление которой с ростом амплитуды тока увеличивается. Низкочастотные синусоидальные колебания могут быть также получены путем моделирования дифференциального уравнения синусоидальных колебаний с помощью операционных усилителей. Схема, реализующая этот метод, подобна схеме фильтра второго порядка, построенного на основе метода переменных состояния, приведенной на рис. 21. Эта схема, как и предыдущая, требует применения системы автоматического регулирования амплитуды колебаний. Сложность обеспечения высокой стабильности амплитуды колебаний при минимальных искажениях выходной синусоиды существенно усложняет построение генераторов синусоидальных колебаний и управление ими. Лучшие результаты во многих случаях, особенно на низких и инфранизких частотах, дает применение так называемых функциональных генераторов. Блок-схема простейшего функционального генератора приведена на рис. 38. Он включает генератор прямоугольного и треугольного напряжения и блок формирования синусоидального сигнала. Рис 38. Блок-схема функционального генератора Как показано на рис. 35, генератор прямоугольного и треугольного напряжения состоит из триггера Шмитта и интегратора, образующих замкнутый контур. Блок формирования синусоидального сигнала обычно представляет собой нелинейный функциональный преобразователь, например, на основе аналогового перемножителя. Если частота генератора постоянна, то в качестве блока формирования синусоидального сигнала можно использовать также фильтр нижних частот с полосой пропускания несколько выше частоты требуемого синусоидального сигнала. Функциональные генераторы производятся некоторыми фирмами в виде ИМС. Например, микросхема МАХ038 генерирует синусоидальные, треугольные, прямоугольные и импульсные сигналы в области частот от 0,1 Гц до 20 МГц, причем синусоидальные сигналы имеют коэффициент гармоник не более 0,75%. Лучшие результаты дает применение прямого цифрового синтеза с использованием цифро-аналоговых преобразователей.
|
||||||||||||
Последнее изменение этой страницы: 2016-09-05; просмотров: 406; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.20.205 (0.008 с.) |