Укрупнённая классификация электрических и электронных компонентов 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Укрупнённая классификация электрических и электронных компонентов



Электрические и электронные компоненты как составные части конструкций технических средств электронных систем безопасности (ЭСБ), их влияние на характеристики, надежность и эффективность функционирования ЭСБ.Характеристика составных частей конструкций электронных устройств систем безопасности: конструктивные элементы, элементы электрических схем, вспомогательные элементы

Элементная база в РЭС – это электрорадиоэлементы (ЭРЭ), интегральные микросхемы (ИС) и устройства функциональной электроники (УФЭ).

Электрорадиоэлементы (ЭРЭ) включают соединители, резисторы, конденсаторы, индуктивности и другие. Интегральные микросхемы (ИС) включают полупроводниковые и гибридные, устройства функциональной электроники (УФЭ) – приборы с зарядовой связью, акустоэлектронные приборы, оптоэлектронные приборы и другие.

Резисторы, конденсаторы, диоды, транзисторы, интегральные микросхемы представляют собой металлургические конструкции, распределение химических элементов, в которых в процессе эксплуатации не должно изменяться (процессы эксплуатационного старения, деградации и т. д. рассматриваются отдельно), т. е. они образуются на так называемых статистических неоднородностях и конструкторско-технологической интеграции.

Функциональная электроника – это новое перспективное направление в современной элементной базе РЭА. Устройства функциональной электроники основаны на использовании динамических неоднородностей и физических принципов интеграции. Это отличает их от транзисторов, диодов. ИС и других элементов РЭА.

Важнейшие функции, выполняемые различными устройствами в РЭА, направлены на преобразование сигналов, запись и хранение информации, ее отображение, замыкание, размыкание цепей и т. д.

Пассивные элетрорадиоэлементы выполняют различные операции над сигналами. Они основаны на таких физических процессах как электрический контакт, взаимодействие электрического тока и магнитного поля, напряжения и электрического заряда и др. К ним можно отнести катушки индуктивности, конденсаторы, резисторы, трансформаторы и т. д.

Элементной базой принято также считать устройства, состоящие из отдельных ЭРЭ, например, LC -фильтры, или из электромеханических элементов (соединители, переключатели, реле).

Полупроводниковые и электровакуумные приборы, являясь активными элементами, по физической сущности функционирования принципиально отличаются от пассивных. Их принцип действия основан на сложных физических процессах, они характеризуются специфическими параметрами, конструкцией и технологией.

В настоящее время дискретные активные элементы обычно используются при больших мощностях, на сверхвысоких частотах и в аппаратуре рентгеновской диагностики.

Интегральные микросхемы пленочные, гибридные и полупроводниковые разной степени интеграции – наиболее широко применяются в СМЭ. В гибридных ИС используются навесные транзисторы и конденсаторы большой емкости и некоторые другие компоненты, а резисторы, конденсаторы малой емкости, соединения и в редких случаях катушки индуктивности формируются нанесением пленок на поверхности подложки.

Обработка сигналов осуществляется продвижением носителей из области одной статической неоднородности в область другой. При этом происходит непрерывное изменение физических величин – носителей информации, таких как ток, потенциал, концентрация носителей и т.д.

Электромеханические фильтры – пьезоэлектрические, магнитострикционные и на поверхностных акустических волнах позволяют получить весьма узкую полосу пропускания, достигающую 0,1% ω0. В области высоких частотфильтрами могут служить цепи с распределенными параметрами – длинные волны, согласованные с нагрузкой. На высоких частотах фильтр НЧ приобретает свойства интегрирующей цепи.

Усиление сигналов. Усилителем называется четырехполюсник, предназначенный для увеличения за счет энергии источника питания интенсивности колебаний при неизменной, по возможности, их форме. Различают усилители напряжения, тока и мощности. В усилителях напряжения сигнал одновременно усиливается и по мощности. Тем самым усилитель принципиально отличается от трансформатора или колебательного контура, которые способны повышать интенсивность колебаний только по напряжению или току, но не по мощности.

Временная задержка сигнала осуществляется в РЭА с помощью линий задержки (ЛЗ). ЛЗ называется четырехполюсник, который задерживает сигнал на заданное время (τз) без искажения его формы. Допускается изменение амплитуды сигнала на выходе ЛЗ.

Основными характеристики линий задержки, кроме τзявляются – полоса пропускания, линейность фазовой характеристики, волновое сопротивление, добротность, коэффициент передачи.

Коммутация и разъединение цепей. В зависимости от вида коммутируемых цепей соединительные изделия подразделяются на 5 групп; низкочастотные, низковольтные соединители (разъемы), высоковольтные соединители, радиочастотные соединители, импульсные соединители и комбинированные соединители.

Электропитание РЭА. К устройствам электропитания предъявляются следующие требования: надежность при различных режимах работы основных блоков РЭА; малые габариты и вес; низкая стоимость составляющих компонентов, высокая стабильность параметров; отсутствие импульсных нагрузок при включении и выключении.

 

 

Укрупнённая классификация электрических и электронных компонентов

ЭЭКТС:

1. Пленочные:

– Оптические диски;

– Индикаторы;

– ЖКИ;

– Активные элементы;

–Светочувствит.;

–RC–схемы(толстопленочные и тонкопленочные).

2. Твердотельные:

а) Дискретные приборы:

– Диоды;

– Транзисторы;

– Датчики;

– Многоэлементные приборы.

б) ИС:

– Малая интегральная схема (МИС);

– Средняя интегральная схема (СИС);

– Большая интегральная схема (БИС);

– Сверхбольшая интегральная схема (СБИС);

–Ультрабольшая интегральная схема (УБИС).

3. Вакуумные:

– Генераторные лампы;

– Вакуумные лампы(D, T, П);

– ЭЛТ;

– Газоразрядные приборы.

4. Прочие:

– ГИС(Гибридные интегральные схемы);

– Керамические.

 

 

Дроссели

Дроссель электрический – катушка индуктивности, включаемая в электрическую цепь последовательно с нагрузкой для устранения (подавления) или ограничения переменной составляющей тока различной частоты. Реактивное сопротивление

XL = 2πfL = wL

где f – частота;

w – циклическая частота;

L – индуктивность;

Дроссели обычно имеют сердечник (электротехническая сталь). Применяются преимущественно в электрических фильтрах.

Дроссель высокой частоты – это катушка индуктивности, включаемая в цепь тока высокой частоты для увеличения ее сопротивления. При этом значение постоянного тока или тока низкой частоты не изменяется. Дроссели применяются в цепях фильтрации питания усилителей высокой частоты. Для повышения заградительных свойств дроссель должен обладать значительной по сравнению с контурной катушкой индуктивностью и весьма малой емкостью. Резонансная частота дросселя должна быть гораздо больше частоты выделяемого в контуре рабочего сигнала. В этом случае при индуктивности порядка сотен микрогенри дроссель должен быть эффективен в развязывающих цепях контуров УВЧ. Конструктивно дроссели высокой частоты выполняют намоткой на любой каркас, например, на основания непроволочных резисторов, в виде однослойных сплошных катушек либо катушек типа "универсаль". Дроссели, выпускаемые промышленностью, намотаны на ферритовые стержни и опрессованы пластмассой, их индуктивность сотни микрогенри –единицы миллигенри.

 

Низкочастотные дроссели

Низкочастотные дроссели, в большинстве случаев предназначенные для уменьшения пульсации выпрямленного напряжения в телевизорах, радиоприемниках, передатчиках и других устройствах, входят в состав сглаживающих и низкочастотных LC -фильтров. Сопротивление дросселя постоянному току весьма мало и равно омическому сопротивлению провода обмотки. Сопротивление дросселя переменному току

Z = 2πfL

(где f – частота питающей сети 50 или 400 Гц или пульсаций 100 или 800;

L – индуктивность дросселя в Гн) составляет несколько единиц – десятков кOм и зависит от требуемого уровня допустимых пульсаций.

В управляемых дросселях, наоборот, используется свойство магнитного материала изменять свое сопротивление переменному току при изменении рабочей точки магнитной характеристики.

 

 

Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока.

Работа трансформатора основана на двух базовых принципах:

1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм)

2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция)

Это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока, и наоборот.

Закон Фарадея

ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит:

Где U2 — Напряжение на вторичной обмотке,

N2 — число витков во вторичной обмотке,

Φ — суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит.

ЭДС, создаваемая в первичной обмотке, соответственно:

Где U1 — мгновенное значение напряжения на концах первичной обмотки,

N1 — число витков в первичной обмотке.

Поделив уравнение U2 на U1, получим отношение:

Трансформаторы напряжения являются особо важными и необходимыми аппаратами высокого напряжения они предназначены для понижения высокого напряжения (свыше 250 В) до значения, равного 100 В, 100/ В, 100/3 В - необходимого для питания измерительных приборов, цепей автоматики, сигнализации и защитных устройств. Они так же, как и трансформаторы тока, изолируют (отделяют) измерительные приборы и реле от высокого напряжения, обеспечивая безопасность их обслуживания.

Функциональная электроника

Функциональная электроника – одно из направлений твердотельной электроники, охватывающее использования различных физических явлений в твердых средах для интеграции различных схемотехнических функций в объеме одного твердого тела (функциональная интеграция) и создания электронных устройств с такой интеграцией.

В отличие от схемотехнической интеграции функционально простых элементов (резисторов, конденсаторов, транзисторов и т. п.), которые локализованы в различных листах твердого тела и способны выполнять сложные схемотехнические функции лишь в совокупности, например, в составе ИС, включающей в себя также элементы связи (межсоединения), при функциональной интеграции сложны схемотехнические функции и по комбинации могут реализоваться физическими процессами, протекающими во всем рабочем объеме твердого тела.

Переход от схемотехнической интеграции к функциональной позволит устранить значительную часть принципиальных и технологических трудностей, связанных с необходимостью формировать в одном кристалле множество структурных элементов и межсоединений.

Схемотехническая интеграция – это технологическая интеграция.

Функциональная интеграция – это физическая интеграция.

Функциональная интеграция – ориентируется на преимущественное использование волновых процессов и распределенного взаимодействия электромагнитных полей с электронами и атомами в твердых телах.

При создании устройств функциональной электроники могут быть использованы различные материалы –полупроводники, магнитодиэлектрики, пьезоэлектрики, сегнетоэлектрики, а также многослойные гомо - и гетероструктуры из этих материалов.

Среди разнообразных приборов функциональной электроники наибольшее распространение получили:

– акустоэлектронные приборы;

– приборы на волнах пространственного заряда в твердом теле;

– приборы с зарядовой связью;

– оптоэлектронные устройства с распределенным взаимодействием и т.п.

 

Индуктивность

Основным параметром катушки индуктивности является её индуктивность, численно равная отношению создаваемого током потока магнитного поля, пронизывающего катушку к силе протекающего тока. Типичные значения индуктивностей катушек от десятых долей мкГн до десятков Гн.

Индуктивность катушки пропорциональна линейным размерам катушки, магнитной проницаемости сердечника и квадрату числа витков намотки. Индуктивность катушки, намотанной на тороидальном сердечнике:

,

где — магнитная постоянная,

— относительная магнитная проницаемость материала сердечника (зависит от частоты),

— площадь сечения сердечника,

— длина средней линии сердечника,

— число витков.

При последовательном соединении катушек общая индуктивность равна сумме индуктивностей всех соединённых катушек:

.

При параллельном соединении катушек общая индуктивность равна:

.

Сопротивление потерь

В катушках индуктивности помимо основного эффекта взаимодействия тока и магнитного поля наблюдаются паразитные эффекты, вследствие которых импеданс катушки не является чисто реактивным. Наличие паразитных эффектов ведёт к появлению потерь в катушке, оцениваемых сопротивлением потерь . Потери складываются из потерь в проводах, диэлектрике, сердечнике и экране:

Добротность

С сопротивлениями потерь тесно связана другая характеристика — добротность. Добротность катушки индуктивности определяет отношение между активным и реактивным сопротивлениями катушки. Добротность равна

Практически добротность лежит в пределах от 30 до 200. Повышение добротности достигается оптимальным выбором диаметра провода, увеличением размеров катушки индуктивности и применением сердечников с высокой магнитной проницаемостью и малыми потерями, намоткой вида «универсаль», применением посеребрёного провода, применением многожильного провода вида «литцендрат» для снижения потерь, вызванных скин-эффектом.

Вариометры

Это катушки, индуктивностью которых можно управлять (например, для перестройки частоты резонанса колебательных контуров) изменением взаимного расположения двух катушек, соединённых последовательно. Одна из катушек неподвижная (статор), другая обычно располагается внутри первой и вращается (ротор). Существуют и другие конструкции вариометров. При изменении положения ротора относительно статора изменяется степень взаимоиндукции, а следовательно, индуктивность вариометра. Такая система позволяет изменять индуктивность в 4 − 5 раз. В ферровариометрах индуктивность изменяется перемещением ферромагнитного сердечника относительно обмотки, либо изменением длины воздушного зазора замкнутого магнитопровода.

 

 

Рисунок 4е – Вариометр – катушка с регулируемой индуктивностью и поступательным перемещением сердечника

 

1 - обмотка;

2 - каркас;

3 - сердечник;

 

Основные процессы в производстве микроэлектронных компонентов: технологический процесс, как большая система, общая классификация базовых технологических процессов в производстве микроэлектронных компонентов

Технологический процесс (ТП) (сокращенно техпроцесс) — это упорядоченная последовательность взаимосвязанных действий, выполняющихся с момента возникновения исходных данных до получения требуемого результата..

Любой технологический процесс (ТП) можно представить в виде большой системы (рисунок 2.3).

Здесь - Х1, Х2...ХN - входы системы (подложки, пластины, испаряемые материалы, диффузанты и др.). Это параметры исходных про­дуктов.

У1,У2...УN - выходы системы (параметры ИС или ее части). Это выходные параметры конечного продукта.

Z1,Z2...ZN - контролируемые и управляемые факторы (температура подложек, давление в камере, расход газа и т.д.). Это факторы, возмущающие технологический процесс.

W1,W2...WN - неконтролируемые факторы, оказывающие случайное возмущающее действие на процесс (состав остаточной атмосферы). Это влияющие технологические факторы.

ТП изготовления современных ИМЭ настолько сложны, в большинстве случаев они изучаются с помощью экспериментально-статистических методов, которые позволяют определить наиболее существенные технологические факторы, определить характер их влияния на качество изделий и построить модель исследуемого про­цесса. Среди методов анализа ТП наиболее широко используются:

- дисперсионный анализ;

- регрессионный и корреляционный анализ;

- математическое планирование эксперимента.

Технологический маршрут - последовательность техно­логических операций обработки пластин или подложек, применяемых для изготовления данного типа ИМЭ. Документом, содержащим описание маршрута, является маршрутная карта.

Технологический процесс производства полупроводниковых приборов и интегральных микросхем (микропроцессоров, модулей памяти и др.) включает нижеследующие операции.

· Механическую обработку

· Химическую обработку

· Эпитаксиальное наращивание слоя полупроводника

· Получение маскирующего покрытия

· Фотолитография

· Введение электрически активных примесей в пластину для образования отдельных p- и n-областей

· Получение омических контактов и создание пассивных элементов на пластине

· Добавление дополнительных слоев металла

· Пассивация поверхности пластины

· Разделение пластин на кристаллы

 

Экономические предпосылки

Закон Мура: Гордон Мур – основатель компаний Intel и Fairchild (1965 г.)

Число транзисторов на полупроводниковый кристалл (чип) удваивается через каждые 18-24 месяцев!

Стоимость ИС при ее продаже потребителю примерно равна удвоенной стоимости прямых расходов на ее создание:

 


Сп – стоимость ИС при продаже;

Ср – прямые затраты на проектирование ИС;

Си – прямые затраты на изготовление;

Нп – доля прибыли, включение которой в цену изделий является

необходимым элементом расширенного воспроизводства.

 

Технические характеристики

Основные характеристики интегральных микросхем и тенденции развития

Год Минимальный характерный размер технологии, мкм Число входов/выходов на чип Частота,MГц Плотность, число транзис-торов/см2 Число транзисторов на чип
  0.35     4·106 1.0·107
  0.25     7·106 2.0·107
  0.18     1·107 4.7·107
  0.13     2·107 1.1·108
  0.10     5·107 2.9·108
  0.07     9·107 5.6·108
  0.05     2·108 6.4·108

Усложнение структуры ИМС

Изменение характеристических размеров элементов кремниевых ИМС.

Ограничения на ширину канала МОП транзисторов в настоящее время ≈250 Å (0.025 мкм)

 

Сдерживающие факторы

Бурный прогресс развития микроэлектроники сопровождается постоянным усложнением технологии, что влечет за собой неуклонное удорожание оборудования.

В связи с этим в начале 90-х годов встал вопрос о справедливости выполнении закона Мура на современном этапе развития микроэлектроники с экономической точки зрения. Основной аргумент в пользу такого вывода состоит в экспоненциально возрастающей стоимости проектирования и оборудования, надежности и стоимости, а также затрат на тестирование изделий.

Основные параметры

Номинальное сопротивление Rном и его допустимое отклонение± δR. Сопротивление резисторов (Ом) в общем случае определяется формулой

R = рl/S,

где р и S – удельное электрическое сопротивление, Ом • мм2/м, и площадь поперечного сечения, мм2, токопроводящего элемента; l – длина пути прохождения тока, м.

Сопротивление поверхностных резисторов цилиндричесхой формы без спиральной нарезки и с нарезкой R = рl/(πD1h); R = рN πD2/[(t-a)h]; длина образующей цилиндра резистора без нарезки, м; h – толщина токопроводящего слоя, мм; D1 и D2 наружные диаметры керамических стержней соответственно в мм и м; N, t и а – число витков, шаг и ширина спиральной нарезки, мм.

Сопротивление объемных резисторов прямоугольной формы

R = рl/(bc); где l, b и с – длина, ширина и высота композиционного стержня, мм. Сопротивление проволочных резисторов R = 4рl/(πd2); где l и d длина, м, и диаметр, мм, проволоки.

Сопротивление непроволочных переменных резисторов с токопроводящей “подковкой” R = р(r1+r2) πφ/[(r1+r2) h*360]; где р – удельное поверхностное электрическое сопротивление композиции,Ом • см; r1 и r2 внешний и внутренний радиусы “подковы”, см; φ – угол, соответствующий повороту ползуна на конкретную длину токопроводяще го слоя, град.

Сопротивление тонкопленочных резисторов ГИС R = рٱl/b; где рٱ – удельное электрическое сопротивление пленки металла или сплава, пасты, отнесенное к произвольному квадрату ее поверхности, Ом/ٱ; l и b – длина и ширина пленочного резистора, мм.

Номинальное сопротивление резистора обычно указано маркировкой на нем. Для резисторов широкого назначения, согласно ГОСТ 10318 – 74, существует шесть рядов номинальных сопротивлений. Е6, Е12, Е24, Е48, Е96 и Е192. Цифра указывает число номинальных значений в данном ряду, которые зависят от допустимого отклонения сопротивления резистора и его номинала. Допустимые в ГОСТ 9б64--74 отклонения сопротивления от номиналов даны (в процентах) рядом чисел: ± 0,01; ± 0,02; ± 0,05; ± 0,1,. ± 0,2,. ± 0,5,. ± 1,. ± 2,. ± 5,. ± 10., ± 20,. ± 30. Прецизионные резисторы имеют допустимые отклонения сопротивления не хуже ± 2%, резисторы общего назначения – ± 5%; ± 10%; и ± 20% а переменные – до ± 30%.

Номинальная мощность рассеивания Рном Под этой величиной понимают максимально допустимую мощность, которую резистор может длительное время рассеивать при непрерывной электрической нагрузке в заданных условиях эксплуатации, сохраняя параметры в установленных ТУ пределах. Эта величина зависит от температуры окружающей среды и приложенного напряжения, что отражается ТУ на резисторы в зависимостях коэффициента нагрузки k= Рдоп / Рном отэтих двух факторов.

Согласно ГОСТ 9663 – 61, значения Р ном(Вт) выбирают из ряда 0,01; 0,025; 0,05; 0,125; 0,25; 0,5; 1; 2; 5; 8; 10; 16; 25; 50; 75; 100; 160; 250; 500. Как правило, чем выше номинальная мощность рассеивания, тем больше габариты резисторов. В большинстве блоков РЭА и ЭВА применяют резисторы, номинальная мощность рассеивания которых не выше 2 Вт. При этом следует учесть, что для надежного функционирования аппаратуры коэффициент нагрузки обычно выбирают не более 0,3.

Предельное рабочее напряжение U пр. Максимально допустимое напряжение, приложенное к выводам резистора, которое не вызывает превышениянорм ТУ на электрические параметры, называют предельным рабочим напряжением. Эта величина обычно задается для нормальных условий эксплуатации и зависит от длины резистора, шага спиральной нарезки, температуры и давления окружающей среды. Чем выше температура и ниже атмосферное давление, тем вероятнее тепловой или электрический пробой и отказ резистора.

Температурный коэффициент сопротивления (ТКС). Этот параметр характеризует относительное изменение сопротивления резистора при изменении температуры окружающей среды на 1оС и выражается в 1оС:

ТКС = дR/(R0 дt),

где д R – абсолютное изменение сопротивления резистора, Ом, в диапазоне температур дt = t – t0, оС; R0 сопротивление резистора (Ом) при нормальной температуре t0; t – положительная или отрицательная предельная температура эксплуатации резистора по ТУ, оС.

Значения ТКС для группы резисторов С1 не превышают – (5 ÷ 20)*104 1/оС, для группы С2 – ± (7 ÷ 16) *104 1/оС,. для группы С3 – + (10 ÷ 25) *104 1/оС, для группы С4 – (– 20 ÷ + 6) *104 1/оС. и для группы С5 – (– 5÷ + 10) *104 1/оС, в томчисле для прецизионных + (0,15 ÷ 1,5)*104 1/оС. Для большинства групп резисторов эта величина является линейной, а в случаях, когда она изменяется по резко нелинейному закону, в ТУ указывают не ее, а предельные относительные изменения сопротивления при крайних значениях рабочих температур. Значение и знак ТКС определяются в основном температурным коэффициентом удельного сопротивления - (ТКр) материала токопроводящего слоя. Так, проволочные резисторы имеют малый положительный ТКС; углеродистые – отрицательный среднего значения (с увеличением температуры увеличивается контактируемость «зерен» слоя и сопротивление уменьшается); полупроводниковые – большой отрицательный (уменьшается сопротивление р-n-переходов), а металлизированные и композиционные – знакопеременный средний и большой (в зависимости от того, что преобладает: контактируемость «зерен» или увеличение сопротивления под действием хаотического движения электронов в «зернах»).

Шумы. При приложении к резисторам постоянного или переменного напряжения в них наблюдаются шумы. Шум представляет собой переменную составляющую, накладываемую на постоянный уровень напряжения резистора, что создает помехи для прохождения сигнала и ограничивает, в частности, чувствительность радиоприемных трактов РЭА. Особенно вредны шумы резисторов, используемых во входных цепях радиоприемников, так как они усиливаются вместе с принимаемым полезным сигналом.

Собственные шумы резисторов имеют двоякую структуру. Это так называемые тепловые и токовые шумы. Тепловые шумы возникают под действием хаотического движения электронов в токопроводящем слое («броуновское движение»), что приводит к случайным микроизменениям сопротивления резистора и, следовательно, к появлению переменных пульсаций напряжения на нем. Тепловые шумы при увеличении температуры возрастают. Они присущи всем видам резисторов, но по значению меньше токовых и поэтому характерны лишь для проволочных резисторов, в которых “токовые” шумы отсутствуют.

Частотные свойства резисторов. При работе резисторов в диапазоне ча-стот сопротивление может изменяться относительно его номинала при постоянном токе, что приводит к изменению выходных параметров и устойчивости работы функциональных узлов, блоков и РЭА в целом. Эти изменения, особенно для мегагерцевого диапазона частот, могут составлять единицы децибел.

В общем случае упрощенная эквивалентная схема резистора для высоких частот (рис.71) кроме собственно активного сопротивления R включает реактивные составляющие – индуктивности L’пар и L"пар и емкость Спар. Так как они ухудшают частотные свойства резисторов, их часто называют паразитными. В различных типах резисторов паразитные индуктивности и емкость образуются по-разному, поэтому и меры, предусматривающиеих уменьшение, также отличаются. Более подробно мы рассмотрим это при описании конкретных типов резисторов. В проволочных резисторах паразитные индуктивности образуются в обмотке провода и в выводах, а паразитная емкость - между витками обмотки.

 
 

Рис. 71. Эквивалентная схема резистора для высоких частот

 

Проволочные резисторы по сравнению с непроволочными гораздо менее высокочастотны и применение их без принятия специальных мер ограничивается областью постоянного тока и диапазоном звуковых частот.

Нелинейные свойства резисторов. Сопротивление резистора может изменяться также в зависимости от режима его работы (приложенного напряжения, протекающего тока, вида переменного поля – непрерывный или импульсный режим). При этом изменения сопротивления выражаются в процентах на единицу напряжения или тока либо просто в процентах при переходе на единицу напряжения или тока либо просто в процентах при переходе от непрерывного режима к импульсному и оцениваются соответственно коэффициентами напряжения, нагрузки или коэффициентом импульсной нагрузки.

Постоянный непроволочный поверхностный резистор цилиндрической формы, характерный для групп С1, С2 и СЗ (рис. 66), представляет собой круглый керамический стержень 3, на внешнюю поверхность которого нанесен тонкий (от долей до единиц микрометра) токопроводящий слой 2. На оба конца стержня насажены латунные колпачки 1 с аксиальными (чаще всего) выводами. Для защиты от внешней среды резистор покрывают гидрофобной (водоотталкивающей) эмалью 4, а выводы облуживают. Цвет эмали обычно обозначает ту или иную группу резисторов (например, красный – группу С2). Токопроводящий слой низкоомных резисторов (не более 200 – З00 Ом) сплошной, а резисторов с более высокими сопротивлениями – с нарезкой; причем чем выше сопротивление, тем мельче шаг нарезки.

Постоянный непроволочный объемный резистор прямоугольной формы, характерный для группы С4 (рис. 67), представляет собой стержень из токопроводящей композиции 4 с проволочными аксиальными выводами 1, которые опрессованы стеклоэмалевой (стеклокерамической) оболочкой 2. Такая конструкция весьма устойчива к механическим воздействиям и влиянию влаги.

 
 

 

 

Рис. 67. Постоянный непроволочный резистор прямоугольной формы:

1 проволочный вывод, 2 – етеклоэмалевая оболочка, 3 – эмалевое

покрытие, 4 токопроводящая композиция

Постоянный проволочный резистор, характерный для группы С5, представляет собой изоляционный каркас, на который намотана проволока (или микропроволока в стеклянной изоляции),. имеющая высокое удельное сопротивление. Каркас выполняют из керамики или нагревостойкой пластмассы, а обмотка из манганина, константана или нихрома может быть однослойной, многослойной, простой и специальной, секционированной и несекционированной. Снаружи резистор покрывают термостойкой эмалью, опрессовывают пластмассой либо герметизируют металлическим корпусом, закрываемым с торцов керамическими шайбами. Резистор может быть цилиндрической или прямоугольной формы.

Постоянный ниточный резистор, характерный для групп микромодульных резисторов С2-12 и СЗ-З, представляет собой стержень из стекловолокна с нанесенными на его поверхность тонкими слоями сплавов олова или токопроводящей композиции и применяется при конструировании ГИС. Ниточные резисторы приклеивают к контактным площадкам подложек токопроводящим клеем-контактолом.

Постоянный тонкопленочный резистор ГИС представляет собой напыленный через специальную маску на ситалловую или поликоровую подложку тонкий (не более 1 мкм) слой проводникового материала в виде прямоугольной полоски или “меандра” (рис. 68). Для защиты от окисления на эти резисторы часто напыляют слой моноокиси кремния или покрывают их гидрофобным лаком.

Постоянный толстопленочный резистор ГИС изготовляют нанесением через трафарет (маску) специальных паст на основе благородных металлов. Пасту втирают специальным инструментом (ракелем) в керамическую подложку (керамика 22"С), а затем вжигают, получая резисторы прямоугольной формы с шириной полоски на порядок большей, чем у тонкопленочных.

Постоянные резисторы. Среди множества типов резисторов, выпускаемых промышленностью, большинство является постоянными общего назначения. В их конструкциях используются практически все виды токопроводящих элементов. Так как резисторы, применяемые в микроэлектронной аппаратуре, должны иметь малые массу и габариты, постепенно исчезают резисторы больших номинальных мощностей рассеивания и, наоборот, появляются резисторы милливаттных мощностей. Учитывая это, рассмотрим постоянные резисторы общего назначения, номинальная мощность которых не превышает 2Вт. Некоторые типы этих резисторов показаны на рис. 74, а – г.

 

 

Углеродистые резисторы, предназначенные для цепей постоянного, переменного и импульсного токов радиотехнической и электронной аппаратуры, изготовляются термическим испарением гептана на керамические цилиндрические стержни, имеют радиальные или аксиальные выводы и являются резисторами поверхностного типа. Снаружи резисторы покрыты гидрофобной эмалью зеленого цвета и выпускаются обычного и тропического исполнения. Большинство этих резисторов имеют максимальную рабочую температуру 100оС и рабочую температуру 40оС, при которой допустим коэффициент нагрузки, равный единице; для резисторов тропического исполнения эти температуры соответственно равны 125 и 70оС.

Резисторы этой группы достаточно высокочастотны, так как обладают небольшой паразиткой емкостью в витках нарезки из-за меньшей толщины токопроводящего слоя (сотые доли микрометра), малогабаритны и стабильны (их ТКС средний и всегда отрицательный). Однако из-за широкого применения металлопленочных и быстрого развитиямикропроволочных высокостабильных резисторов, некоторые типы которых по массе и габаритам не уступают углеродистым, их применение ограничено.

В настоящее время выпускаютсяуглеродистые резисторы С1, предназначенные для работы в условиях сухого и влажного тропического климата, габариты и масса которых значительно меньше, чем у ранее выпускаемых резисторов ВС. Кроме того, они более влагостойки и менее подвержены обрастанию плесневыми грибка



Поделиться:


Последнее изменение этой страницы: 2016-08-16; просмотров: 1280; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.231.245 (0.128 с.)