Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные этапы формирования твёрдотельной структуры биполярных интегральных микросхем (ИМС)Содержание книги
Поиск на нашем сайте
Элементы биполярных интегральных структур создаются в едином технологическом цикле на общей полупроводниковой подложке. Каждый элемент схемы формируется в отдельной изолированной области, а соединения между элементами выполняются путем металлизации на поверхности пассивированной схемы. Изоляция межу элементами схемы осуществляется двумя способами: обратносмещенными p–n переходами и диэлектриком. Изоляция обратносмещенным переходом реализуется следующими технологическими методами: разделительной; коллекторной изолирующей диффузией; базовой изолирующей диффузией; методом трех фотошаблонов; изоляцией n- полостью. Для изоляции элементов ИМС диэлектриком используют слой SiO2 и Si3N4, ситалл, стекло, керамику, воздушный зазор. Технологические методы создания ИМС с диэлектрической изоляцией – это: эпик - процесс, изапланарный, эпипланарный, полипланарный; метод вертикального изотропного травления; методы изоляции воздушным зазором с помощью диэлектрического основания, балочных выводов, кремния на сапфире или шпинели. Наиболее распространенным является эпитаксиально - диффузионный метод разделительной диффузии. Для создания транзисторной структуры n-p-n используется подложка p-кремния. Пластина кремния окисляется в атмосфере влажного и сухого кислорода. После первой фотолитографии проводится локальная диффузия донорной примеси с малым коэффициентом диффузии (As, Sb) и формируется скрытый высоколегированный слой n+ глубиной около 2 мкм. Примесь с малым коэффициентом диффузии необходимо использовать, чтобы свести к минимуму изменение границ скрытого слоя при последующих высокотемпературных технологических операциях. После этого с поверхности полностью удаляется слой окисла и пластина очищается. На очищенной поверхности кремния выращивается эпитаксиальный слой n-типа толщиной 10–15 мкм с удельным сопротивлением 0,1 – 10 Ом•см. Поверхность эпитаксиального слоя оксидируется. В слое окисла проводится вторая фотолитография и создаются окна для локальной разделительной диффузии. Разделительная диффузия проводится в две стадии: первая (загонка) – при температуре 1100–1150 ºС, вторая (разгонка) – при температуре 1200–1250 ºС. В качестве диффузанта используется бор. Разделительная диффузия осуществляется на всю глубину эпитаксиального слоя; при этом в подложке кремния формируются отдельные области полупроводника, разделенные p-n переходами. В каждой изолированной области в результате последующих технологических операций формируется интегральный элемент. Для проведения базовой диффузии процессы очистки поверхности, окисления и фотолитографии повторяются, после чего проводится двухстадийная диффузия бора: первая при температуре 950-1000 ºС, вторая при температуре 1150-1200 ºС. Эмиттерные области формируются после четвертой фотолитографии. Эмиттерная диффузия проводится в одну стадию при температуре около 1050 ºС. Одновременно с эмиттерами формируются области под контакты коллекторов. В качестве легирующей примеси используется фосфор. Для получения омических контактов производится пятая фотолитография, в результате которой в защитном окисном слое вскрываются окна под контакты.
6 Дроссели и трансформаторы в электронных системах безопасности Дроссели Дроссель электрический – катушка индуктивности, включаемая в электрическую цепь последовательно с нагрузкой для устранения (подавления) или ограничения переменной составляющей тока различной частоты. Реактивное сопротивление XL = 2πfL = wL где f – частота; w – циклическая частота; L – индуктивность; Дроссели обычно имеют сердечник (электротехническая сталь). Применяются преимущественно в электрических фильтрах. Дроссель высокой частоты – это катушка индуктивности, включаемая в цепь тока высокой частоты для увеличения ее сопротивления. При этом значение постоянного тока или тока низкой частоты не изменяется. Дроссели применяются в цепях фильтрации питания усилителей высокой частоты. Для повышения заградительных свойств дроссель должен обладать значительной по сравнению с контурной катушкой индуктивностью и весьма малой емкостью. Резонансная частота дросселя должна быть гораздо больше частоты выделяемого в контуре рабочего сигнала. В этом случае при индуктивности порядка сотен микрогенри дроссель должен быть эффективен в развязывающих цепях контуров УВЧ. Конструктивно дроссели высокой частоты выполняют намоткой на любой каркас, например, на основания непроволочных резисторов, в виде однослойных сплошных катушек либо катушек типа "универсаль". Дроссели, выпускаемые промышленностью, намотаны на ферритовые стержни и опрессованы пластмассой, их индуктивность сотни микрогенри –единицы миллигенри.
Низкочастотные дроссели Низкочастотные дроссели, в большинстве случаев предназначенные для уменьшения пульсации выпрямленного напряжения в телевизорах, радиоприемниках, передатчиках и других устройствах, входят в состав сглаживающих и низкочастотных LC -фильтров. Сопротивление дросселя постоянному току весьма мало и равно омическому сопротивлению провода обмотки. Сопротивление дросселя переменному току Z = 2πfL (где f – частота питающей сети 50 или 400 Гц или пульсаций 100 или 800; L – индуктивность дросселя в Гн) составляет несколько единиц – десятков кOм и зависит от требуемого уровня допустимых пульсаций. В управляемых дросселях, наоборот, используется свойство магнитного материала изменять свое сопротивление переменному току при изменении рабочей точки магнитной характеристики.
Трансформатор — это статическое электромагнитное устройство, имеющее две или более индуктивно связанных обмоток на магнитопроводе и предназначенное для преобразования посредством электромагнитной индукции одной или нескольких систем (напряжений) переменного тока в одну или несколько других систем (напряжений) переменного тока без изменения частоты системы (напряжения) переменного тока. Работа трансформатора основана на двух базовых принципах: 1. Изменяющийся во времени электрический ток создаёт изменяющееся во времени магнитное поле (электромагнетизм) 2. Изменение магнитного потока, проходящего через обмотку, создаёт ЭДС в этой обмотке (электромагнитная индукция) Это означает, что, повышая с помощью трансформатора напряжение в несколько раз, мы во столько же раз уменьшаем силу тока, и наоборот. Закон Фарадея ЭДС, создаваемая во вторичной обмотке, может быть вычислена по закону Фарадея, который гласит: Где U2 — Напряжение на вторичной обмотке, N2 — число витков во вторичной обмотке, Φ — суммарный магнитный поток, через один виток обмотки. Если витки обмотки расположены перпендикулярно линиям магнитного поля, то поток будет пропорционален магнитному полю B и площади S через которую он проходит. ЭДС, создаваемая в первичной обмотке, соответственно: Где U1 — мгновенное значение напряжения на концах первичной обмотки, N1 — число витков в первичной обмотке. Поделив уравнение U2 на U1, получим отношение: Трансформаторы напряжения являются особо важными и необходимыми аппаратами высокого напряжения они предназначены для понижения высокого напряжения (свыше 250 В) до значения, равного 100 В, 100/ В, 100/3 В - необходимого для питания измерительных приборов, цепей автоматики, сигнализации и защитных устройств. Они так же, как и трансформаторы тока, изолируют (отделяют) измерительные приборы и реле от высокого напряжения, обеспечивая безопасность их обслуживания.
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 865; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.116.24.148 (0.007 с.) |