Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Тема 1.1. Оборудование складовСодержание книги
Поиск на нашем сайте
На предприятие сырье поступает упакованным в мешки из крафт-бумаги или полиэтилена массой по 25 кг; контейнеры эластичные массой 200 кг; цистерны емкостью 30-50 м3. Сырье, поступающее в мешках или контейнерах, растаривается непосредственно возле перерабатывающего оборудования или устройствах для растаривания цехового склада сырья. Разгрузка цистерн производится пневмотранспортом с гибкими патрубками. Внутрь цистерн подается сжатый воздух под давлением 2 атм. Основное оборудование, предназначенное для хранения сыпучих ингредиентов, составляют бункера (силосы), которые в зависимости от назначения подразделяются на бункера складского хранения и расходные бункера систем автоматического дозирования. Емкость и число бункеров, устанавливаемых на заводском складе, определяется мощностью предприятия, поскольку запас сырья на складе должен обеспечивать 10—15-суточную работу предприятия. Емкость бункера составляет от 100 М3 и более. Бункер складского хранения (рис.1) представляет собой сварной цилиндр 1 из листового дюралюминия диамет ром до 5 м и высотой 10-15 м. К нижней части цилиндра приваривается коническое днище 2. Отверстие в днище, диаметром примерно 1 м перекрывается шлюзовым затвором 3, через который материал поступает к питателю 4. Верхняя часть цилиндра перекрывается конической крышкой, внутри или над которой располагается циклон-отделитель 5 системы пневмотранспорта. Контроль за уровнем находящегося в бункере сырья может производиться с помощью радиационных уровнемеров или по весу с помощью тензометрических силоизмерителей, определяющих нагрузку в опорных стойках бункера. Угол наклона стенок днища бункера не должен превышать 20° по отношению к вертикали во избежание сводообразования и зависания в нем сыпучего сырья. Непосредственно под бункером устанавливается разгрузочное устройство – секторный дозатор (рис.2). Работа секционного питателя основана на отборе материала из бункера, установленного над питателем, с помощью ряда отсеков в роторе 2, вращающегося в корпусе 1. Дозируемый материал из бункера через загрузочный патрубок 3 поочередно заполняет отсеки ротора и после поворота его на определенный угол выгружается из отсека под действием собственной силы тяжести. Для выгрузки из бункера материалов, склонных к слеживаемости, применяют аэрацию материала потоком воздуха и вибрационные устройства. В аэрационных питателях (рис. 3) подачей воздуха под давлением через распределительную заслонку 3 и перфорированное днище 2 в нижнюю часть бункера 1 материал в бункере частично или полностью переводят в псевдоожиженное состояние. При этом под действием силы тяжести материал перемещается в соответствующую точку технологического процесса (или на дозирование) по наклонным перфорированным лоткам-трубопроводам 4 (где также поддерживается в псевдоожиженном состоянии) или трубопроводу 5 (рис. 3, б). Производительность последнего регулируют заслонкой 3 или стандартной арматурой. а) б) Для уменьшения расхода воздуха и снижения его давления используют виброаэрационные питатели (рис.3, б), в которых выгрузку материала облегчают сообщением колебаний от вибраторов 6 всему бункеру, закрепленному на пружинящих опорах. Расход рассмотренных питателей определяется площадью проходного сечения, конструктивными особенностями и размерами, параметрами процесса псевдоожижения и др. При этом, из-за сильного влияния на расход высоты слоя материала, находящегося в бункере, расход изменяется во времени. Механические вибрационные устройства, так называемые «активаторы» или «побудители», можно устанавливать как снаружи бункера, так и внутри его и включать в работу только во время истечения материала: в противном случае происходит лишь дополнительное уплотнение материала. Вибраторы, создающие колебание стенок бункера, предельно просты, экономичны, безопасны в работе при относительно низкой стоимости. Однако они менее эффективны, чем вибрационные устройства, расположенные внутри материала в выходной зоне бункера. Разгрузочное вибрационное устройство с двойным вибрирующим конусом (рис. 4, а) включает в себя конический приемник, закрепленный на стяжках 2 через виброизоляционные прокладки 3 на выходном патрубке бункера 4. Герметичность соединения обеспечивается эластичным уплотнением 5. Приемник 7 и установленный в нем конус-рассекатель 9 приводятся в колебательное движение с амплитудой 10 мм и частотой до 500 Гц с помощью механического или гидравлического вибратора 6. Высыпающийся из бункера материал выгружается через разгрузочный патрубок 8 с эластичным уплотнением 7. При работе вибратора приемник 1 колеблется в горизонтальной плоскости. Благодаря этому материал не зависает в выходном конусе бункера, ликвидируется его уплотнение и создаются оптимальные условия для его свободного и равномерного движения по поверхности конуса рассекается от его центра к периферии.
а) б) Кроме аэрационных разгрузочных устройств и вибросит в некоторых случаях применяют червячные разгрузочные устройства (рис. 4, б). При вращении червяка 1 материал, находящийся в приемном окне бункера захватывается его витками и перемещается к разгрузочному патрубку 3. Для регулирования и стабилизации производительности перед разгрузочным патрубком располагают цилиндрический участок длиной не менее одного диаметра червяка. Зазор 6 между желобом и кромкой витков является важным конструктивным параметром, влияющим на работу шнека. Величина δ должна компенсировать возможные неточности сборки и прогиб шнека во избежание соприкосновения металлических поверхностей. Важно также предотвратить защемление частиц, так как это может вызывать возникновение больших контактных давлений и моментов сопротивления. Характер заполнения горизонтальных шнеков и перемещение в них сыпучего материала под уплотняющим воздействием материала, находящегося в бункере, определяются следующим: достигается такое уплотнение материала, при котором сдвиг в материале, захваченном шнеком, прекращается, и материал перемещается как твердая пробка, разрушающаяся на выходном участке. Основываясь на таком механизме перемещения и допуская, что силы тяжести малы, а также, что частица, под действием винтовой поверхности шнека перемещается в направлении, соответствующем углу трения на этой поверхности, независимо от нормальной загрузки. Производительности за один оборот рассматриваемого питателя будет где
здесь – внешний радиус цилиндрической поверхности нарезки шнека; – шаг винтовой нарезки; – угол трения материла о поверхность шнека, – угол подъема винтовой нагрузки на среднем радиусе витка . Трение в зазоре между материалом и кромкой витка червяка и между материалом и желобом проявляется по-разному. При гладкой цилиндрической поверхности желоба материал скользит по ней; при этом эффективная площадь сечения транспортируемого материала увеличивается, а производительность несколько возрастает. Шероховатая поверхность и большой зазор приводят к сдвигу материала по цилиндрической поверхности радиусом . При этом на стенке желоба образуется слой практически неподвижного материала. - Пневматическая система транспортировки гранулированных материалов С помощью пневматических транспортирующих устройств, использующих для перемещения материала поток газа (обычно воздуха) в различных трубопроводах, возможно выполнение всех операций по транспортировке и питанию, начиная с загрузочных операций и кончая упаковкой. Такие устройства допускают транспортировку в любом направлении, создают малые потери транспортируемого материала и достаточно компактны. При компактном приводе они удобны в обслуживании и легко автоматизируются; этим объясняется расширение применения таких систем при транспортировке порошков, гранул, крошки. Емкость пневмотранспортных систем не лимитируется, а производительность может достигать значений от 50 до 50000 кг/ч. Различают следующие типы пневмотранспортных систем – пневматические, вакуумные, пневмовакуумные и закрытой циркуляции. Вакуумные транспортирующие устройства (рис. 5, а), в которых материал перемещается потоком воздуха за счет создания вакуума в конце линии, наиболее часто применяют для подачи материалов (одного или нескольких) из нескольких точек хранения в одну точку потребления. В таких системах вследствие создания вакуума в трубопроводе 4 материал при поступлении из бункеров 1 через ротационные питатели 3, увлекается потоком воздуха и перемещается по трубопроводу. Над приемной емкостью 6 установлен циклон 5, в котором транспортируемый материал отделяется от воздуха. Под действием собственной силы тяжести материал, поступает в приемную емкость, а воздух после дополнительной очистки во втором циклоне 7 (или мешочном фильтре) проходит через устройство, создающее вакуум, и выбрасывается в атмосферу. Транспортируемый материал, собирающийся во втором циклоне, также подается в приемную емкость. Воздух вводится в систему через фильтр 2 для очистки от пыли и возможных загрязнений.
Рис. 5. Вакуумные транспортирующие системы отличаются малыми потерями материала, отсутствием запыленности и относительно низкой стоимостью вакуумного оборудования. Необходимое оборудование в точке потребления, как правило, удобно скомпоновано, что обеспечивает достаточно легкую и быструю очистку системы при смене материала. В этой системе довольно просто достигается смешение и пропорциональная транспортировка нескольких материалов в очень широком интервале изменения состава смеси, вплоть до 1: 100. При расстояниях транспортировки до 300 м и высоте подъема до 10 м вакуумные транспортирующие системы обеспечивают производительность от 250 до 7500 кг/ч. Пневматические системы (рис. 5, б), транспортирующие сыпучий материал потоком воздуха за счет создания более высокого давления в заборной части системы, весьма эффективны при транспортировке материалов из одной точки питания к нескольким точкам потребления. В пневмотранспортных системах воздух нагнетается компрессором 2 через фильтр 1 в транспортирующую трубу 5, куда из питающего бункера 4 через питатель 8 подается транспортируемый материал. Поток воздуха перемещаемым материалом по достижении точки потребления поступает в циклон 6, где материал отделяется от воздуха. Материал перемещается в бункер 8 приемного устройства, на котором размещен циклон, а воздух после дополнительной очистки на втором циклоне 7 (или в мешочном фильтре) выводится в атмосферу. Как и в вакуумных устройствах, материал из второго циклона также поступает в приемный бункер. Для загрузки пневматических систем транспортировки можно применять ротационные питатели с воздушным затвором, шнековые питатели или выполнять непосредственную загрузку из резервуаров с применением продувки воздухом. Для разгрузки обычно используют циклоны, на которых при необходимости можно устанавливать воздушные заслонки. При транспортировке гранулированных материалов (если отсутствует пыление) их можно выгружать непосредственно в приемный бункер. К преимуществам описанного метода перемещения материалов можно отнести экономичность, так как небольшим количеством воздуха можно транспортировать достаточно большие объемы материала, возможность эффективного смешения материалов в процессе транспортировки и применения воздуха при перепаде давления по длине трубопровода более 40 кПа. Существующие конструкции пневматических систем позволяют с помощью одного источника сжатого воздуха доставлять материал в 18 точек потребления. Пневмовакуумные транспортирующие системы (рис. 5, в) представляют собой комбинацию рассмотренных систем, отличаются гибкостью применения и универсальностью и совмещают преимущества как вакуумной, так и пневматической систем. При этом вакуумная магистраль 1 предназначена для подачи материалов в стационарные и промежуточные хранилища, а пневматическая линия 2 для их перемещения от промежуточных хранилищ в точки потребления. Обычно такие системы используют для перемещения сыпучих материалов от средств доставки, например железнодорожных цистерн и вагонов. Производительность таких систем, как правило, превышает 8 т/ч. Пневмотранспортные системы с закрытой циркуляцией, в которых воздух из циклонов, приемных устройств подается на вход компрессора, используют в случае создания инертной среды, при необходимости поддержания минимальной влажности продукта или полного предохранения транспортируемого материала от загрязнений, а также в случаях, когда перемещаемый материал не полностью отделяется от воздуха в приемном устройстве. Производительность пневмотранспортных устройств систем сильно зависит от расстояния транспортировки, что объясняется значительными потерями давления в трубопроводах на трение перемещаемой массы о стенки транспортирующей трубы. Движение гранулированных материалов в системах пневмотранспорта основано на эффекте псевдоожижения. Пропускание воздушного потока через слой сыпучего материала вызывает уменьшение его насыпной плотности и приводит его частицы в хаотическое движение. Когда скорость воздушного потока достигает критического значения (скорость витания), сыпучий материал переходит в псевдоожиженное состояние и может транспортироваться по трубам. Скорость начала псевдоожижения зависит от размеров частиц, их плотности, плотности и вязкости газа и др. Скорость витания можно определить по зависимости где – число Рейнольдса для скорости витания; – кинематическая вязкость воздуха; – средний диаметр частицы. Загрузка транспортирующего потока транспортируемым материалом характеризуется величиной коэффициента взвеси m где – расход твердого материала; – расход газовой фазы. С другой стороны, величина этого коэффициента определяется соотношением где – объемная концентрация транспортируемого материала; – плотность твердого материала; – плотность потока воздуха. где – кажущаяся плотность транспортируемого материала. Для определения объемной концентрации используют выражение где – критерий Архимеда; – скорость воздушного потока в трубе; – начальная объемная концентрация. где – насыпана плотность материала. Массовый расход воздуха где – плотность воздуха, – диаметр трубопровода, – скорость воздушного потока в трубе диаметром . Массовый расход транспортируемого материала
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 515; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.175.48 (0.008 с.) |