Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Клеточная теория. Строение нервной клетки.↑ Стр 1 из 11Следующая ⇒ Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
А.А. ПСЕУНОК
АНАТОМИЯ МОЗГА
Спецкурс
МАЙКОП 2002 УДК 612.17 (4-053) ББК 57.31 П 86 Печатается по решению редакционно-издательского совета Адыгейского государственного университета
Рецензенты: кандидат биологических наук, доцент Хасанова Н.Н., кандидат педагогических наук, доцент Ханжиева А.Я.
Псеунок А.А. Анатомия мозга. Спецкурс. – Майкоп: Изд-во ООО «Аякс», 2002. – 112 с.
В спецкурсе изложены современные представления о классификации нервной системы, структуре головного и спинного мозга. Рассматриваются вопросы организации, функционирования и взаимодействия проекционных и ассоциативных систем головного и спинного мозга. Пособие предназначено для студентов, аспирантов, преподавателей, научных работников.
© А.А. Псеунок, 2002.
Предисловие Настоящий спецкурс включает тематику лекций и лабораторных занятий. Он представляет собой попытку соединить компактность издания и доступность изложения материала, с одной стороны, подробность и академичность – с другой. Именно поэтому автор надеется увидеть своими читателями и студентов биологических факультетов высших учебных заведений, и научных работников, и абитуриентов. В основу спецкурса легли сведения из научной литературы по теме издания, проанализированные автором в процессе подготовки данного учебно-методического пособия. Спецкурс «Анатомия мозга» может быть полезен и для других специальностей в вузах в качестве курса по выбору в соответствии с государственными стандартами высшего профессионального образования, утвержденными Министерством образования РФ.
Серое и белое вещество.
Гистогенез нервной ткани удаётся проследить с момента образования нервной трубки. Её клетки, называемые медуллобластами, образуют эпителиеподобный многорядный слой. Ядра медуллобластов лежат на разных уровнях, а цитоплазматические достигают своими суженными концами наружной пограничной перепонки, отделяющей нервную трубку от окружающей её мезенхимы, и внутренней пограничной перепонки, выстилающей просвет нервной трубки. Утолщение боковых стенок нервной трубки связано с пролиферацией и округлением клеток, смещающихся к её просвету. В совокупности эти делящиеся митотическим путём клетки образуют внутренний терминальный (зародышевый), или камбиальный, средний, или плащевой, слой, и расположенный более поверхностно наружный слой. Цитоплазма клетки наружного слоя, разрыхляясь, образует губчатую сеть, которая называется краевой зоной, или вуалью. Клетки, образовавшие губчатую сеть краевой зоны, называются спонгиобластами. Из спонгиобластов развиваются элементы нейроглии: астроциты, спонгиобласты, будущие нервные клетки – нейробласты. На этих стадиях нейробласты отличаются по величине своих ядер, которые значительно крупнее, чем у спонгиобластов. Клетки внутреннего камбиального слоя, удлиняясь, а затем принимая характерную для призматического эпителия форму, превращаются в эпендиму, которая выстилает просвет спинномозгового канала и желудочков головного мозга. На своей апикальной (верхушечной) поверхности клетки эпендимы несут мерцательные реснички. Спонгиобласты и нейробласты среднего слоя спинного мозга составляют зачаток серого вещества. Отростки нейробластов, передвигающиеся в наружный слой, дифференцируются в проводящие пути. Эти отростки окружаются развивающимися из спонгиобластов астроцитами и олигодендроцитами и образуют зачаток белого вещества спинного мозга. Тело будущей нервной клетки покрывается снаружи глиальными клетками. Эти клетки получили название клеток-сателлитов. Также сателлиты образуют капсулу вегетативных нейробластов. Отростки нейробласта сопровождаются особыми вспомогательными глиальными элементами – шванновскими клетками. Последние представляют собой разновидность глии, которая закладывается вместе с нейробластами в ганглионарной пластинке. Шванновские клетки – разновидность клеток нейроглии, образующих мякотную миелиновую оболочку нейронов. Нервная клетка будущих передних рогов спинного мозга посылает свой аксон через передние корешки к развивающимся мышцам или железистым клеткам. В нервной трубке в задних рогах одновременно формируются будущие ассоциативные нервные клетки, отличающиеся короткими отростками. Протоплазма растущих аксонов нейробластов обнаруживает способность к росту, амебоидному движению и активному «самостоятельному» передвижению между другими тканевыми элементами. На своей вершине растущий аксон несёт конусовидное утолщение – колбу роста. Изучение нейробластов в условиях прижизненных наблюдений тканевых культур и при помощи электронной оптики показало, что аксон растёт по межклеточным промежуткам в виде тонкого цитоплазматического тяжа. Вскоре у периферических нервных волокон появляются мякотные, состоящие из миелина, оболочки, которые образуются в процессе дифференцировки шванновских клеток. В ряде случаев миелин отсутствует; тогда, в отличие от мякотных, говорят о безмякотных нервных волокнах. В последнее время при помощи электронной оптики прослежены особенности развития периферических миелиновых (мякотных) и лишенных миелина (безмякотных) нервных волокон. Первоначально растущий аксон лежит, примыкая к поверхности шванновских клеток, а затем вдавливается в её цитоплазму, увлекая за собой поверхностную плазматическую оболочку (мембрану), вследствие чего образуется так называемый мезаксон. Вокруг аксона на участках оболочки шванновской клетки в местах соприкосновения её складок с аксоном синтезируется миелин. В дальнейшем вернувшиеся поверхности оболочки шванновской клетки начинают обвивать осевой цилиндр, разрастаясь при этом наподобие спирали. Предполагают, что процесс спирального разрастания мембраны сопряжён с вращением шванновской клетки вокруг аксона. В итоге концентрические слои миелина оттесняют ядро шванновской клетки на периферию. По всей своей длине аксон входит в контакт с чередующимися шванновскими клетками. Через промежутки порядка 1 мм миелин прерывается, оставляя открытыми участки мембраны аксона (перехваты Ранвье). В безмякотных нервных волокнах шванновские клетки образуют сплошные синцитиальные тяжи, которые «заселяются» группами аксонов. Миелинизация начинается у человека на 4-м месяце внутриутробной жизни и заканчивается лишь после рождения. В мозговых пузырях процессы протекают аналогичным образом, но с тем существенным отличием, что серое вещество развивается не только в средних слоях, но и на поверхности мозговых пузырей, где образуется сложная слоистая кора больших полушарий и мозжечка. Особую проблему составляет вопрос о причинах ориентации нервных волокон среди тканей развивающегося эмбриона. По этому поводу существует несколько теорий. Согласно механической теории, или теории стереотропизма, нейробласты и их отростки распределяются благодаря механическим факторам, связанным с ультраструктурой (стереоструктурой), т.е. мицеллярной ориентацией окружающих тканей. По теории хемотаксиса, или нейротропизма, направление роста аксона определяется особого рода секретом, вырабатываемым в тканях, который притягивает к колбе роста аксона. Согласно теории нейробиотаксиса, распределение нервных волокон в тканях определяется различиями в электрических биопотенциалах между дендритами и аксоном нейробласта. Направление и ориентация растущих нервных волокон наряду с перечисленными внешними факторами определяются также внутренней пространственной цитоплазматической структурой тела и отростков нейробластов. На поздних стадиях дифференцировки нейробласт, как правило, теряет способность делению.
Глия (нейроглия).
Глия или нейроглия – это клетки в головном и спинном мозге, своими телами и отростками заполняющие пространство между нейронами и мозговыми капиллярами. Каждая клетка ЦНС окружается протоплазматическими астроцитами с цитоплазмой, содержащей малое количество фибриллярных нитей. Волокна нервных клеток в белом веществе окружены фиброзными астроцитами, в цитоплазме которых присутствует большое количество фибриллярного материала. Фиброзные астроциты заполняют пространство между пучками миелизированных нервных волокон. Эти крупные клетки в составе глии похожи на раскрывшиеся бутоны астр, отсюда и их название – астроциты. Олигодендроциты родственны астроцитам, но отличаются меньшими размерами и более мелкими ядрами, а также более слаборазвитыми ветвистыми отростками. Они связаны непосредственно с телами нейронов и нервными волокнами, поэтому их часто рассматривают в качестве центральных гомологов шванновских клеток. Мелкие микроглиальные клетки похожи на паучков. Они отличаются характером своих отростков и очень небольшими темными ядрами. Эти клетки равномерно рассеяны как в головном, так и спинном мозге. Таким образом, глия образует очень сложную сеть, состоящую из клеточных тел и отростков. В ячейке этой сети, как в сотах, располагаются нервные клетки и их отростки. И только в области контактов, т.е. на месте синапсов нервных клеток, имеет место «прорыв» в глиальной прокладке. Нейроглия играет роль опоры для отростков. Скопления нервных клеток с окружающей их глией называются ганглиями. В условиях патологии глия отличается высокой реактивностью и, в отличие от нейронов, способностью к пролиферации. Глиальные клетки участвуют как в дегенеративных, так и регенеративных процессах, связанных с травмами, сосудистыми расстройствами или нейроинфекциями. Способностью к активной миграции и фагоцитозу особенно отличаются микроглиальные клетки. Особое место в нервной ткани занимает эпендимный призматический эпителий – нейроэпителий, выстилающий спинномозговой канал и желудочки головного мозга. У эмбрионов и новорожденных он несёт мерцательные реснички. Что касается крупных сосудов, которые находятся в нервной ткани, то они на всем протяжении сопровождаются соединительной тканью и покрыты глиальными, образованными астроцитами, пограничными мембранами, которые некоторыми исследователями рассматриваются в качестве одного из субстратов гематоэнцефалического барьера, обеспечивающего избирательную проницаемость сосудов мозга. Лимфатические сосуды нервной ткани отсутствуют.
СТРУКТУРА ГЛИАЛЬНЫХ КЛЕТОК. Глиальные клетки были впервые выделены в определенную группу элементов нервной системы в 1871 г. Р. Вирховым, который рассматривал своеобразную соединительную ткань мозга. Он назвал эти клетки нейроглией, т.е. нервным клеем. Выделяют 4 типа глиальных клеток: астроциты, олигодендроциты, клетки эпиндемы и микроглии. 1. Астроцитарная глия – это крупные клетки со светлым овальным ядром, многочисленными отростками и небольшим числом органоидов. 2. Олигодендроциты – это глиальные клетки, к которым относятся: олигодендроциты серого и белого вещества мозга, шванновские клетки, клетки-спутники (сателлитная глия). Характеризуются более плотной цитоплазмой, хорошо развитым ЭПР (эндоплазматическим ретикулюмом), аппаратом. Гольджи, множеством митохондрии и лизосом. 3. Эпендимная глия является разновидностью глиальных клеток. Она образует выстилку полостей мозговых желудочков и центрального канала спинного мозга. Представлена цилиндрическими и кубическими клетками. В них хорошо развиты органоиды. 4. Микроглия – это мелкие отростчатые клетки с очень плотной цитоплазмой. Характерен фагоцитоз. До сих пор окончательно не решен вопрос о происхождении микроглии в эмбриогенезе. С одной стороны, ее рассматривают как своеобразные макрофаги, и таким образом, относят к элементам тканей внутренней среды мезенхимного происхождения. С другой стороны, имеются данные, позволяющие рассматривать часть микроглии как недифференцированные (покоящиеся) астроциты, которые при определенных условиях начинают активно размножаться и превращаться в зрелые фиброзные астроциты. Первые три разновидности глиальных клеток образуются в эмбриогенезе, как и нейрон из нейроэктодермы, микроглия же занимает несколько обособленное положение. Глия выполняет следующие функции: - обеспечение нормальной деятельности определенных нейронов и всего мозга; - обеспечение элементарной изоляции тел нейронов, их отростков и синапсов при неадекватном взаимодействии между нейронами; - активный захват астроцитами из синаптической щели медиаторов или их составных частей после прекращения синаптической передачи. В частности, целиком захватываются глией такие медиаторы, как КА (катехоламины); - трофическую функцию глий. В глиальных клетках сосредоточен основной запас гликогена (главного энергетического субстрата мозга) и липиды. Они контролируют ионный состав межклеточной жидкости, гомеостаз внутренней среды мозга.
Нервная клетка.
НЕЙРОН – это отдельная нервная клетка, строительный блок мозга. Она передает нервные импульсы по единственному длинному волокну (аксону) и получает их по многочисленным коротким волокнам (дендритам) (Ч. Стивенс). Хотя нейроны, или нервные клетки, имеют те же самые гены, то же общее строение и тот же биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функции, скажем, печени. Важными особенностями нейронов являются характерная форма, способность наружной мембраны генерировать нервные импульсы и наличие уникальной структуры – синапса, служащего для передачи информации от одного нейрона другому. Полагают, что мозг человека состоит из 1011 нейронов: это приблизительно столько же, сколько звезд в нашей Галактике. Не найдется и двух нейронов, одинаковых по виду. Несмотря на это, их формы обычно укладываются в небольшое число широких категорий, и большинству нейронов присущи определенные структурные особенности, позволяющие выделить три области клетки: клеточное тело, дендриты и аксон. Тело содержит ядро и биохимический аппарат синтеза ферментов и других молекул, необходимых для жизнедеятельности клетки. Обычно тело нейрона имеет приблизительно сферическую или пирамидальную форму. Дендриты представляют собой тонкие трубчатые выросты, которые многократно делятся и образуют ветвистое дерево вокруг тела клетки. Они создают ту основную физическую поверхность, на которую поступают идущие к данному нейрону сигналы. Аксон тянется далеко от тела клетки и служит той линией связи, по которой сигналы, генерируемые в теле данной клетки, могут передаваться на большие расстояния в другие части мозга и остальную нервную систему. Аксон отличается от дендритов как по строению, так и по свойствам своей наружной мембраны. Большинство аксонов длиннее и тоньше дендритов и имеет отличный от них характер ветвления: если отростки дендритов в основном группируются вокруг клеточного тела, то отростки аксонов располагаются на конце волокна, в том месте, где аксон взаимодействует с другими нейронами. Функционирование мозга связано с движением потоков информации по сложным цепям, состоящим из нейронных сетей. Информация передается от одной клетки к другой в специализированных местах контакта – синапсах. Типичный нейрон может иметь от 1000 до 10000 синапсов и получать информацию от 1000 других нейронов. Хотя в своем большинстве синапсы образуются между аксонами одной клетки и дендритами другой, существуют и иные типы синаптических контактов: междуаксоном и аксоном, между дендритом и дендритом и между аксоном и телом клетки. В области синапса аксон обычно расширяется, образуя на конце пресинаптическую бляшку, которая является передающей информацию частью контакта. Концевая бляшка содержит мелкие сферические образования, называемые синаптическими пузырьками, каждый из которых содержит несколько тысяч молекул химического медиатора. По прибытии в пресинаптическое окончание нервного импульса некоторые из пузырьков выбрасывают свое содержимое в узкую щель, отделяющую бляшку от мембраны дендрита другой клетки, предназначенного для приема таких химических сигналов. Таким образом, информация передается от одного нейрона к другому с помощью некоторого посредника или медиатора. Импульсация нейрона отражает активацию воздействующими нейронами сотен синапсов. Некоторые синапсы являются возбуждающими, т.е. они способствуют генерированию импульсов, тогда как другие – тормозные – способны аннулировать действие сигналов, которые в их отсутствие могли бы возбудить постсинаптический нейрон. Хотя нейроны и являются строительными блоками мозга, это не единственные клетки, которые в нем имеются. Так, кислород и питательные вещества поставляются плотной сетью кровеносных сосудов. Существует потребность и в соединительной ткани, особенно на поверхности мозга. Один из важных классов клеток центральной нервной системы, как ранее отмечалось, составляют глиальные клетки, или глия. Глия занимает в нервной системе практически всё пространство, которое не занято самими нейронами. Хотя функция глии пока не вполне изучена, по-видимому, она обеспечивает структурную и метаболическую опору для сети нейронов. В аксонах, имеющих миелиновую оболочку, распространение нервного импульса происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энергии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные. Нейроны способны выполнять свою функцию только благодаря тому, что их наружная мембрана обладает особыми свойствами. Мембрана аксона по всей его длине специализирована для проведения электрического импульса. Мембрана аксонных окончаний способна выделять медиатор, а мембрана дендритов реагирует на медиатор. Кроме того, мембрана обеспечивает узнавание других клеток в процессе эмбрионального развития, так что каждая клетка отыскивает предназначенное ей место в сети, состоящей из 1011 клеток. В связи с этим многие современные исследования сосредоточены на изучении всех тех свойств мембраны, которые ответственны за нервный импульс, синаптическую передачу, узнавание клеток и установление контактов между клетками. Мембрана нейрона, как и наружная мембрана любой клетки, имеет в толщину около 5 нм и состоит из двух слоев липидных молекул, упорядоченных таким образом, что их гидрофильные концы обращены в сторону водной фазы, находящейся внутри и снаружи клетки, а гидрофобные концы повернуты в сторону от водной фазы и образуют внутреннюю часть мембраны. Липидная часть мембраны приблизительно одинакова у клеток всех типов. Что делает одну мембрану отличной от другой, так это специфические белки, которые связаны с мембраной тем или иным способом. Белки, которые фактически встроены в двойной липидный слой, называются внутренними белками. Другие белки, периферические мембранные белки, прикреплены к мембранной поверхности, но не являются неотъемлемой частью ее структуры. В связи с тем, что мембранные липиды – жидкости, даже внутренние белки часто могут свободно перемещаться с места на место путем диффузии. Однако в некоторых случаях белки жестко закрепляются с помощью вспомогательных структур. Мембранные белки всех клеток распадаются на пять классов: насосы, каналы, рецепторы, ферменты и структурные белки. Насосы расходуют метаболическую энергию для перемещения ионов и молекул против концентрационных градиентов и поддерживают необходимые концентрации этих молекул в клетке. Поскольку заряженные молекулы не могут пройти через сам двойной липидный слой, клетки приобрели в процессе эволюции белковые каналы, обеспечивающие избирательные пути для диффузии специфических ионов. Клеточные мембраны должны узнавать и прикреплять многие типы молекул. Эти функции выполняют рецепторные белки, которые представляют собой центры связывания, обладающие высокой специфичностью и сродством. Ферменты размещаются внутри мембраны или на ней, чем облегчается протекание химических реакций у мембранной поверхности. Наконец, структурные белки обеспечивают соединение клеток в органы и поддержание субклеточной структуры. Эти пять классов мембранных белков не обязательно взаимно исключают друг друга. Так, например, тот или иной белок может быть одновременно и рецептором, и ферментом, и насосом Мембранные белки – это ключ к пониманию функций нейрона, а следовательно, и функций мозга. Поскольку они занимают такое центральное место в современных представлениях о нейроне, следует акцентировать внимание на описании ионного насоса, различных типов каналов и ряда других белков, которые в совокупности наделяют нейроны их уникальными свойствами. Общая идея состоит в том, чтобы суммировать важные характеристики мембранных белков и показать, как эти характеристики определяют нервный импульс и другие сложные особенности функций нейрона. Подобно всем другим клеткам нейрон способен поддерживать постоянство своей внутренней среды, заметно отличающейся по составу от окружающей его жидкости. Особенно поразительны различия в концентрациях ионов натрия и калия. Наружная среда приблизительно в 10 раз богаче натрием, чем внутренняя, а внутренняя среда примерно в 10 раз богаче калием, чем наружная. Как калий, так и натрий способны проникать через поры в клеточной мембране, поэтому некоторый насос должен непрерывно производить обмен вошедших в клетку ионов натрия на ионы калия из наружной среды. Такое выкачивание натрия осуществляется внутренним мембранным белком, называемым Na-K-аде-нозинтрифосфатазным насосом, или, как его чаще называют, натриевым насосом. Белковая молекула натриевого насоса (или комплекс белковых субъединиц) имеет молекулярный вес около 275 000 атомных единиц и размеры порядка 6х8 нм2, что несколько больше толщины клеточной мембраны. Каждый натриевый насос может использовать энергию, запасенную в форме фосфатной связи в аденозинтрифосфате (АТФ), для того чтобы обменять три иона натрия внутренней среды клетки на два иона калия наружной среды. Работая с максимальной скоростью, каждый насос способен транспортировать через мембрану около 200 ионов натрия и 130 ионов калия в секунду. Однако фактическая скорость регулируется в соответствии с потребностями клетки. У большинства нейронов имеется от 100 до 200 натриевых насосов на квадратный микрон мембранной поверхности, но в некоторых участках этой поверхности их плотность почти в 10 раз выше. Типичный мелкий нейрон имеет, по-видимому, порядка миллиона натриевых насосов, способных перемещать около 200 миллионов ионов натрия в секунду. Именно трансмембранные градиенты натрия и калия обеспечивают возможность проведения по нейрону нервного импульса. Мембранные белки, которые служат каналами, существенны для многих сторон деятельности нейрона и в особенности для генерирования нервного импульса и синаптической передачи. Чтобы представить значение каналов для электрической активности мозга, следует описать формирование и рассмотреть свойства упомянутых каналов. Поскольку концентрации ионов натрия и калия по ту и другую сторону мембраны различаются, внутренность аксона имеет отрицательный потенциал примерно в 70 мВ по отношению к наружной среде. В середине XX в. английские исследователи А. Ходжкин, А. Хаксли и Б. Катц в своих классических работах по изучению передачи нервного импульса вдоль гигантского аксона кальмара показали, что распространение нервного импульса сопровождается резкими изменениями проницаемости мембраны аксона для ионов натрия и калия. Когда нервный импульс возникает в основании аксона (в большинстве случаев он генерируется клеточным телом в ответ на активацию дендритных синапсов), трансмембранная разность потенциалов в этом месте локально понижается. Непосредственно впереди области с измененным потенциалом (по направлению распространения нервного импульса) открываются мембранные каналы, пропускающие в клетку ионы натрия. Этот процесс является самоусиливающимся: поток ионов натрия через мембрану способствует открыванию большего числа каналов, облегчает другим ионам возможность следовать за ними. Проникшие в клетку ионы натрия изменяют отрицательный внутренний потенциал мембраны на положительный. Вскоре после открывания натриевые каналы закрываются, но теперь открывается другая группа каналов, которая позволяет ионам калия выходить наружу. Этот поток восстанавливает потенциал внутри аксона до величины его потенциала покоя, т.е. до 70 мВ. Резкий скачок потенциала сначала в положительную, а затем в отрицательную сторону, который выглядит на экране осциллографа как пик («спайк»), известен под названием потенциала действия и является электрическим выражением нервного импульса. Волна изменения потенциала стремительно проносится по аксону до самого его конца во многом подобно тому, как бежит пламя по бикфордову шнуру. Это краткое описание нервного импульса иллюстрирует важность каналов для электрической активности нейронов и подчеркивает два фундаментальных свойства каналов: избирательность и наличие воротных механизмов. Каналы проницаемы избирательно, и степень избирательности варьирует в широких пределах. Так, каналы одного типа позволяют проходить ионам натрия, но сильно препятствуют прохождению ионов калия, тогда как каналы другого типа делают обратное. Однако избирательность редко бывает абсолютной. Канал одного типа, который практически не обладает избирательностью, позволяет проходить примерно 85 ионам натрия на каждые 100 ионов калия; другой канал, с большей избирательностью, пропускает только около 7 ионов натрия на каждые 100 ионов калия. Канал первого типа, известный как активируемый ацетилхолином, имеет пору диаметром около 0,8 нм, которая заполнена водой. У канала второго типа, известного как калиевый канал, пора значительно меньше и содержит меньше воды. Ион натрия приблизительно на 30% меньше иона калия. Точная молекулярная структура, позволяющая более крупным ионам проходить через клеточную мембрану легче, чем более мелким, неизвестна. Однако общие принципы, лежащие в основе такой дискриминации, понятны. Они включают взаимодействия между ионами и участками канальной структуры, сочетающиеся со специфическим упорядочением молекул воды внутри поры. Воротные механизмы, регулирующие открывание и закрывание мембранных каналов, представлены двумя основными типами. Канал одного типа, упоминавшийся выше при описании нервного импульса, открывается и закрывается в ответ на изменения потенциала клеточной мембраны, поэтому говорят, что он управляется электрически. Второй тип каналов управляется химически. Такие каналы реагируют лишь слабо, если вообще реагируют, на изменения потенциала, но открываются, когда особая молекула – медиатор – связывается с некоторой рецепторной областью на белке канала. Химически управляемые каналы обнаружены в рецептивной мембране синапсов: они ответственны за перевод химических сигналов, посылаемых окончаниями аксона в процессе синаптической передачи, в изменения ионной проницаемости. Химически управляемые каналы обычно именуют в соответствии с их специфическим медиатором. Так, например, говорят об АХ-активируемых каналах или о ГАМК-активируемых каналах (АХ – ацетилхолин, ГАМК – гамма-аминомасляная кислота). Электрически управляемые каналы принято называть по иону, наиболее легко проходящему через данный канал. Функционируя, белки обычно изменяют свою форму. Такие изменения формы, называемые конформационными, особенно ярко выражены у сократимых белков, ответственных за движение клеток, но они не менее важны и для многих ферментов и других белков. Конформационные изменения канальных белков составляют основу воротных механизмов, поскольку они обеспечивают открывание и закрывание канала за счет малых перемещений частей молекулы, расположенных в критическом месте и позволяющих блокировать или освобождать пору. Когда электрически или химически управляемые каналы открываются и пропускают ионы, возникает электрический ток, который можно измерить. В нескольких случаях удалось зарегистрировать ток, проходящий через одиночный канал, так что его открывание и закрывание можно было исследовать непосредственно. Обнаружилось, что время, на протяжении которого канал остается открытым, варьирует случайным образом, так как открывание и закрывание канала есть результат некоторых конформационных изменений белковой молекулы, встроенной в мембрану. Наличие случайности в воротных процессах проистекает из случайных столкновений молекул воды и других молекул со структурными элементами канала. Еще в 50-60-х гг. XX в.нейрон в том виде, как его обычно описывали в учебниках, казался очень простой структурой. Теперь благодаря таким эффективным методам исследования, как электронная микроскопия и внутриклеточная регистрация при помощи микроэлектродов, известно, что нейроны имеют исключительно сложную морфо-функциональную организацию и отличаются большим разнообразием. Конечной целью комплекса наук (анатомии и физиологии ЦНС, физиологии ВНД и нейропсихологии) является объяснение того, как нейроны, действуя совместно, могут привести к реализации поведения, наблюдаемого у целого организма. Поэтому чрезвычайно важно прежде всего установить, из чего состоят, как устроены, что могут и чего не могут делать отдельные нейроны. Эта необходимость требует изучения анатомии и физиологии. Если объект исследования находится «на стыке наук», то исследование неминуемо сопряжено с трудностями. Грамотный психолог должен знать анатомию и физиологию и в то же время иметь прочные знания по психологии. До середины XIX в. был широко распространен взгляд на нервную систему как на непрерывное сплетение трубочек (наподобие сосудистой системы), по которым течёт жидкость или электричество. Работа анатомов – Гиса, Кёлликера, Рамон-и-Кахаля – позволила Вальдейеру выдвинуть «нейронную теорию». Вальдейер был убеждён, что нервная система состоит из множества отдельных клеток, называемых «нейронами», и что от одной клетки к другой проводится «нервная энергия». Еще в 1935 г. были такие учёные, которые не разделяли этого убеждения, однако с изобретением электронного микроскопа появилась возможность продемонстрировать наличие промежутков между отдельными клетками. В ходе этих и многих других исследований было однозначно выяснено, что нервная клетка, или нейрон, является основной структурно-функциональной единицей нервной системы. Первые исследования по физиологии нейронов проводились в значительной мере на изолированных участках периферических нервов, которые сохраняют в течение некоторого времени нормальные функции, если поместить их в соответствующие условия. Вследствие этого многие из свойств, которые были выявлены и приписаны нейронам вообще, в действительности относились лишь к определенным частям некоторых, довольно нетипичных нейронов. На протяжении многих лет наиболее широко была распространена теория нервного проведения, утверждавшая, что электрический ток, назывызываемый импульсом в одном нейроне, ответствен за разряд других нейронов, с которыми тот контактирует. Эта теория, хотя она и была неправильной, вызвала к жизни многие ценные исследования на таких простых нервных цепях, как нервномышечное соединение и спинномозговые связи, ответственные за рефлекторные реакции. Но постепенно данных, противоречивших электрической теории нервного проведения, становилось всё больше, и их нельзя было не учитывать. Наконец, за последние 20-25 лет была создана более сложная и близкая к истине модель нейрона. КЛАССИФИКАЦИЯ НЕЙРОНОВ: Биохимическая классификация 1. Холинергические (медиатор – АХ – ацетилхолин). 2. Катехоламинергические (А, НА, дофамин). 3. Аминокислотные (глицин, таурин). Размножение клеток
С синтезом веществ протоплазмы и ростом теснейшим образом связано размножение клеток, осуществляющееся путём деления. Основная и универсальная форма деления клеток – митоз (непрямое деление, или кариокинез). При митозе происходит сложная реорганизация ядра и цитоплазмы, которая в наиболее полной форме приводит к образованию двух дочерних клеток, подобных исходной материнской. В процессе митотического деления различают 4 основные стадии: профазу, метафазу (стадия материнской звезды), анафазу (стадия дочерних звёзд) и телофазу. К началу деления животные клетки обычно округляются; центриоли начинают отдаляться друг от друга; цитоплазма между ними приобретает фибриллярное строение; вокруг центриолей путём образования радиально расположенных нитчатых структур образуется лучистое сияние – астросфера. Вскоре центриоли оказываются у двух противоположных полюсов клетки, а фибриллярно структурированная цитоплазма вытягивается между ними в ахроматиновое веретено – расходящиеся микротрубочки клетки. Сущность митоза состоит в преобразовании ядерного аппарата. При переходе интеркинетичекого ядра в стадию профазы в нём вместо глыбок хроматинового материала становятся видимыми микроскопические нитчатые образования – хромосомы. Во многих случаях на этой стадии по длине хромосом обнаруживаются варикозные, интенсивно окрашивающиеся утолщения – хромомеры, имеющие в каждой хромосоме определённую форму и расположение. В течение профазы происходит укорочение хромосом до 1/10-1/20 первоначальной длины при одновременном их утолщении – спирализация хромосом – результат спирального скручивания входящих в состав хромосом тончайших нитей – хромонем. После спирализации хромомерная структура становится незаметной, и хромосомы превращаются в равномерно окрашивающиеся тела, состоящие из двух продольно сложенных, но не всегда различимых половин – хроматид. В это же время исчезает оболочка ядра и растворяется ядрышко. На стадии метафазы хромосомы располагаются в экваториальной плоскости клетки, образуя фигуру материнской звезды или экваториальную пластинку; на этой стадии особенно легко определяются число и форма хромосом. Установлено, что во всех делящихся соматических клетках данного животного организма или спорофита у растений с чередованием поколений, как правило, имеется двойной – диплоидный набор различных по форме и величине хромосом, в зрелых половых клетках хромосом – одинарный (гаплоидный набор или геном). Диплоидный набор хромосом является результатом соединения при оплодотворении хромосомных комплексов женской и мужской половых клеток. Таким образом, в диплоидном наборе каждый сорт хромосом представлен двумя гомологичными хромосомами материнского и отцовского происхождения. У разных видов количество хромосом сильно варьирует. Минимальное количество хромосом у аскариды – 1 пара; у ракообразных имеется 200 хромосом. В тканях человека насчитывается, по данным одних авторов, 23, других – 24 пары хромосом. Важнейшей структурной частью каждой хромосомы является маленький слабо окрашивающийся участок – центромера, или кинетическое тельце. При расщеплении хромосомы на 2 хроматиды этот участок также раздваивается. При достижения хромосомами экваториальной плоскости веретена центромера оказывается местом прикрепления нитей, идущих от полюса вер
|
|||||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 642; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.223.239.65 (0.024 с.) |