Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву
Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Основные нервные структуры и их роль в распространении возбуждения.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте Синапсы в центральной нервной системе.
Распространение возбуждения обеспечивается не только за счет его распространения по мембранам нервных клеток, но и за счет передачи его с одной возбудимой клетки на другую. Эту функцию выполняют синапсы. Синапс(-ы) (греч. sinapsis соединение, связь) - специализированная зона контакта образуемая между нервным окончанием (аксоном) и другими возбудимыми структурами, обеспечивающая передачу возбуждения с сохранением, изменением или исчезновением ее информационного значения. Название синапс, было дано Шеррингтоном в конце позапрошлого – начале - прошлого века. Синапсы играют решающую роль в функции мозга по следующим причинам. Во-первых, они работают по принципу клапана, проводя возбуждение только в одну сторону и обеспечивая, таким образом, упорядоченность в деятельности центральной нервной системы. Во-вторых, эффективность работы синапсов непостоянна, передача сигнала происходит тем лучше, чем чаще он используется в работе. При отсутствии активации синапса даже в течение нескольких дней уже происходит снижение (гипосинапсия), а при более длительном бездействии и полное угнетение (асинапсия) их функциональной активности. Обладая, таким образом, определенной степенью пластичности синапсы играют важнейшую роль в таких функциях, как научение и память. В-третьих, именно синапсы являются точкой приложения многих фармакологических веществ, начиная от блокаторов нервно-мышечной передачи и заканчивая психомиметическими средствами. По способу передачи сигнала, различают химические и электрические синапсы. Химический синапс – тот, в котором возбуждение от мембраны нервного окончания (пресинаптической мембраны) к мембране другой клетки (постсинаптической мембране) передается с помощью химического вещества - медиатора, содержащегося в окончании аксона - синаптическом окончании. Передача возбуждения через химический синапс отличается большой специализированностью. К химическим, относятся абсолютное большинство синапсов и изучены они наиболее полно. Электрический - синапс, в котором возбуждение передается электрическим путем за счет местных токов и низкого сопротивления мембраны. Медиатор в этих синапсах не вырабатывается. Электрические синапсы встречаются значительно реже, чем химические, и отличаются от них большей скоростью передачи возбуждения, высокой надежностью передачи, возможностью двустороннего проведения возбуждения. Химические синапсы классифицируются по анатомическому, нейрохимическому и функциональному принципам. По анатомическому принципу, т.е. по месту расположения, синапсы делятся на нейросекреторные, нервно-мышечные и межнейронные. Нейросекреторный - синапс между нервом и экзокринной или эндокринной железой. Нервно-мышечный - между аксоном двигательного нейрона и скелетным мышечным волокном. Межнейронный - между двумя нейронами. Межнейронные синапсы, в зависимости от места их расположения, бывают аксо-аксональные, аксо-соматические, аксо-дендритические и дендро-дендритические. Отметим, что дендро-дендритические синапсы выделены только гистологически и функциональное значение их неясно. По нейрохимической классификации синапсы различаются по природе медиатора с помощью которого реализуется их эффект. Несмотря на то, что один нейрон, за счет ветвления аксона на его конце, может иметь несколько синапсов, во всех синапсах одной нервной клетки производится один и тот же медиатор (принцип Дейла), поэтому и возможна классификация синапсов по этому признаку. Различают адренергические синапсы – медиатор адреналин, холинергические синапсы – медиатор ацетилхолин, дофаминергические синапсы – медиатордофамин и т.д. В синапсах мозга роль медиаторов могут выполнять около 30 биологически активных веществ, которые помимо проводников возбуждения выполняют и нейросекреторную роль. Нервно-мышечные синапсы скелетных мышц, наоборот, все имеют один и тот же медиатор - ацетилхолин В функциональном плане синапсы делятся на возбуждающие и тормозные. Возбуждающий – тот, в котором под действием медиатора происходит деполяризация постсинаптической мембраны, и на ней возникает возбуждающий постсинаптический потенциал(ВПСП). При этом пришедшее к синапсу возбуждение распространяется дальше. Тормозной - тот, котором под действием медиатора происходит гиперполяризация постсинаптической мембраны, на ней возникает тормозной постсинаптический потенциал (ТПСП), затрудняющий распространение возбуждения. Кроме того, тормозной эффект может вызвать возбуждающий аксо-аксональный синапс, который при высокой частоте импульсации приводит к возникновению устойчивой деполяризации иннервируемой мембраны и возникновению на ней состояния рефрактерности, что делает невозможным проведение возбуждения через этот участок аксона. АДРЕНЕРГИЧЕCКИЕ СИНАПСЫ Адренергические нейроны расположены в ЦНС (голубое пятно среднего мозга, мост, продолговатый мозг) и в симпатических ганглиях. Периферические адренергические синапсы образованы варикозными утолщениями разветвлений постганглионарных симпатических волокон. Медиатор адренергических синапсов - норадреналин. Его предшественник в биосинтезе дофамин выполняет медиаторную функцию в дофаминергических синапсах. Адреналин представляет собой гормон мозгового слоя надпочечников. Все три вещества относятся к группе катехоламинов, так как содержат гидроксилы в 3-м и 4-м положениях ароматического кольца. Синаптические пузырьки в адренергических синапсах имеют под электронным микроскопом гранулярное строение и поэтому получили название гранулы. В гранулах норадреналин депонирован в связи с АТФ и белком хромогранином. В составе гранул обнаружены также ферменты и модулирующие нейропептиды (энкефапины, нейропептид Y). Норадреналин синтезируется из аминокислоты тирозина. Превращение фенилаланина в тирозин является неспецифическим процессом и происходит в печени. Обе аминокислоты в большом количестве содержатся в твороге, сыре, шоколаде, бобовых. ТИРОЗИН
(тирозин-3-монооксигеназа)
ДОФА
L- аминокиспот Кофактор - пиридоксальфосфат
Дофамин-β-гидроксилаза Кофактор – аскорбат
Фенилэтаноламин-N-метилтрансфераза АДРЕНАЛИН
После диссоциации комплексов норадреналин - адренорецептор медиатор инактивируется при участии ряда механизмов: • Нейрональный захват (захват-1) - активный транспорт вначале через пресинаптическую мембрану (сопряжен с выходом ионов натрия), а затем через мембрану гранул под влиянием АТФ-зависимой протонной транслоказы (при входе в гранулы одной молекулы норадреналина в цитоплазму выходят 2 протона); • Экстранейрональный захват (захват-2) нейроглией, фибробластами, миокардом, эндотелием и гладкими мышцами сосудов; • Инактивация ферментами. 70-80% норадреналина участвует в нейрональном захвате, по 10% подвергается экстранейрональному захвату и ферментативному расщеплению. Необходимость нейронального захвата диктуется дефицитом субстратов и большой потребностью в энергии для синтеза норадреналина из тирозина. Для сохранения адреналина основное значение имеет экстранейрональный захват. Ферменты инактивации катехоламинов - моноаминоксидаза (МАО) и катехол – О -метилтрансфераза (КОМТ). МАО, локализованная на внешней мембране митохондрий и в гранулах, осуществляет окислительное дезаминирование катехоламинов с образованием биогенных альдегидов. Затем альдегиды окисляются НАД-зависимой альдегиддегид-рогеназой в кислоты или восстанавливаются альдегидредуктазой в гликоли. Цитоплазматический фермент КОМТ катализирует присоединение метильной группы к гидроксилу в 3-м положении ароматического кольца (только при наличии гидроксила в 4-м положении). Донатором метильных групп служит S-аденозилметионин. Метилированные продукты в 200-2000 раз (по разным тестам) менее активны, чем норадреналин и адреналин. Адренорецепторы Адренорецепторы локализованы на постсинаптической, пресинаптической мембранах и в органах, не получающих адренергическую иннервацию. Постсинаптические адренорецепторы имеют индексы 1 или 2, пресинаптические и внесинаптические адренорецепторы обозначаются индексом 2. Внесинаптические адренорецепторы возбуждаются циркулирующимив крови норадреналином и адреналином. Постсинаптические α1,-адренорецепторы (А, В, О) регулируют функцию мембранных фосфолипаз и проницаемость кальциевых каналов L -типа. В гладких мышцах ионы кальция активируют кальмодулин - зависимую киназу легких цепей миозина, что необходимо для образования актомиозина и сокращения. Только в желудке и кишечнике α1-адренорецепторы, открывая кальцийзависимые калиевые каналы, вызывают гиперполяризацию сарколеммы и расслабление гладких мышц. Эффекты возбуждения α1-адренорецепторов: · Сокращение радиальной мышцы радужки с расширением зрачков (мидриаз; греч. amydros - темный, неясный); · Сужение сосудов кожи, слизистых оболочек, органов пищеварения, почек и головного мозга; · Повышение АД; · Сокращение капсулы селезенки с выбросом депонированной крови; · Сокращение сфинктеров пищеварительного тракта и мочевого пузыря; · Уменьшение моторики и тонуса желудка и кишечника. α 2 - Адренорецепторы (А, В, С) снижают активность аденилатциклазы. Постсинаптические α2 - адренорецепторы суживают сосуды кожи и слизистых оболочек, тормозят моторику желудка и кишечника, уменьшают секрецию кишечного сока. Пресинаптичесие α2 - адренорецепторы по принципу отрицательной обратной связи снижают выделение норадреналина из адренергических окончаний при избытке медиатора в синаптической щели (увеличивают калиевую проводимость мембран, блокируют кальциевые каналы L - и N -типов).
Внесинаптические α2-адренорецепторы вызывают спазм сосудов, подавляют секрецию инсулина и повышают агрегацию тромбоцитов. β-Адренорецепторы, активируя аденилатциклазу, повышают синтез цАМФ (β1,-адренорецепторы также открывают кальциевые каналы в миокарде). Для постсинаптических β1-адренорецепторов характерны следующие эффекты: · Возбуждение сердца - тахикардия, ускорение проведения импульсов по проводящей системе, усиление сокращений миокарда, рост потребности в кислороде, неадекватный выполняемой работе; · Ослабление моторики кишечника; · Секреция ренина; · цАМФ-зависимый липолиз в жировых депо. Постсинаптические и внесинаптические β2-адренорецепторы расслабляют гладкие мышцы и вызывают гипергликемию: • Расширяют сосуды сердца, легких и скелетных мышц; • Снижают АД; • Расширяют бронхи и уменьшают секреторную функцию бронхиальных желез; •Тормозят моторику желудка и кишечника; • Расслабляют желчный пузырь, мочевой пузырь, беременную и небеременную матку; • Усиливают цАМФ-зависимые гликогенолиз и гликонеогенез в печени, гликогенолиз в скелетных мышцах; • Повышают секрецию инсулина. Пресинаптические β2-адренорецепторы осуществляют положительную обратную связь, стимулируя выделение норадреналина при его дефиците в синаптической щели. В сосудах и внутренних органах расположены α- и β-адренорецепторы различных типов, например, в сосудах легких обнаружено 30% β1-адренорецепторов и 70% β2-адренорецепторов.
Холинорецепторы Холинорецепторы представляют собой гликопротеины, состоящие из нескольких субъединиц. Большинство холинорецепторов резервные. На постсинаптической мембране в нервно-мышечном синапсе расположены от сотни миллионов холинорецепторов, из них не функционируют 40-99%. В соответствии с химической чувствительностью холинорецепторы классифицируют на мускариночувствительные (М) и никотиночувствительные (Н). М-холинорецепторы возбуждаются ядом мухомора мускарином и блокируются атропином. Они локализованы в нервной системе и внутренних органах, получающих парасимпатическую иннервацию (вызывают угнетение сердца, сокращение гладких мышц, повышают секреторную функцию экзокринных желез). Молекулярное клонирование позволило выделить 5 типов М-холинорецепторов: М1-холинорецепторы ЦНС (лимбическая система, базальные ганглии, ретикулярная формация) и вегетативных ганглиев; М2-холинореиепторы сердца (вызывают брадикардию, ослабляют сокращения предсердий, снижают атриовентрикулярную проводимость и потребность миокарда в кислороде); М 3-холинорецепторы: • гладких мышц (вызывают сужение зрачков, спазм аккомодации, бронхоспазм, спазм желчевыводящих путей, мочеточников, сокращение мочевого пузыря, матки, усиливают перистальтику кишечника, расслабляют сфинктеры); • желез (вызывают слезотечение, потоотделение, обильное отделение жидкой, бедной белком слюны, бронхорею, секрецию кислого желудочного сока). Внесинаптические М3-холинорецепторы находятся в эндотелии сосудов и регулируют образование сосудорасширяющего фактора -окиси азота (N0). М4- и М 5-холинорецепторы имеют меньшее функциональное значение.
Н-холинорецепторы возбуждаются алкалоидом табака никотином в малых дозах, блокируются никотином в больших дозах. Биохимическая идентификация и выделение Н-холинорецепторов стали возможны благодаря открытию их избирательного высокомолекулярного лиганда α-бунгаротоксина - яда тайваньской гадюки и кобры. Н-холинорецепторы широко представлены в организме. Их классифицируют на Н-холинорецепторы нейронального (Нн) и мышечного (Нм) типов. Нейрональные Нн-холинорецепторы представляют собой пентамеры и состоят из субъединиц α2 – α9 и β2 - β4 (4 трансмембранные петли). Локализация нейрональных Н-холинорецепторов следующая: • Кора больших полушарий, продолговатый мозг, клетки Реншоу спинного мозга, нейрогипофиз (повышают секрецию вазопрессина); • Вегетативные ганглии (участвуют в проведении импульсов с преганглионарных волокон на постганглионарные); • Мозговой слой надпочечников (повышают секрецию адреналина и норадреналина); • Каротидные клубочки (участвуют в рефлекторном возбуждении дыхательного центра). Мышечные Нм-холинорецепторы вызывают сокращение скелетных мышц. Они представляют собой смесь мономера и димера. Мономер состоит их 5 субъединиц (α1 – α2,β,γ,ε,δ), окружающих ионные каналы. Для открытия ионных каналов необходимо связывание ацетилхолина с двумя α-субъединицами. В течение миллисекунд повышается проницаемость для Na+, К+ и Са2+. Пресинаптические М-холинорецепторы тормозят, пресинаптические Н-холинорецепторы стимулируют высвобождение ацетилхолина. Решите ситуационные задачи 1. Каким будет время проведения возбуждения по нерву типа А (скорости проведения 70-120 м/с), если расстояние между раздражающими и регистрирующими электродами равно 10 см.? 2. Какой тип рецепторов должно блокировать лекарственное вещество, чтобы моделировать перерезку: а)преганглионарного волокна симпатического нерва; б)постганглеонарного волокна симпатического нерва; в)постглионарного волокна парасимпатического нерва; г)преганглионарного волокна парасимпатического нерва. 3. Известно, что тетродоксин блокирует натриевые каналы постсинаптической мембраны. Как при этом изменится реакция органов на нервные импульсы? 4. Почему возбуждение М-холинорецепторов сердца приводит к угнетению деятельности этого органа, а возбуждение тех же рецепторов в гладкой мускулатуре сопровождается ее спазмами? 5. Распределите ферменты и рецепторы согласно предлагаемому алгоритму. Ферменты: ацетилхолинэстераза, моноалимооксидаза, катехол-орто-метилтрансфераза. - участвуют в инактивации медиаторов: _____________________________________ - действуют в синаптической щели:_________________________________________ - участвуют в инактивации норадреналина:___________________________________ Рецепторы: a1, a2, b1, b2 - адренорецепторы; М-холинорецепотры, Н-холинорецепторы ганглиев и надпочечников. - локализованы на мембранах исполнительных органов:________________________ - вызывают тахикардию:________________________________________________ - повышают секрецию адреналина:_________________________________________ - повышают АД:________________________________________________________ - понижают АД:__________________________________________________________ - вызывают брадикардию: _________________________________________________
РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА: 1. Материал лекций.
12. Физиология человека / Под редакцией А.В. Косицкого.-М.: Медицина, 1985. 13. Нормальная физиология / Под ред. А.В. Коробкова.-М.; Высшая школа, 1980. 14. Основы физиологии человека / Под ред. Б.И. Ткаченко.-Спб.; 1994. 15. Физиология человека и животных / Под ред. А.Б. Когана. Часть 1 глава 16. Основы физиологии / Под ред. П. Стерки. Глава 17. Основные нервные структуры и их роль в распространении возбуждения. Нервная ткань (textus nervosus), комплексы нервных и глиальных клеток, специфичных для животных организмов. Эволюционно появляется у кишечнополостных и достигает наиболее сложного развития в коре больших полушарий головного мозга млекопитающих. Нервная ткань - основной структурно-функциональный элемент нервной системы. Нейроглия - основной структурный элемент нервной ткани, обеспечивает существование и специфические функции нейронов, выполняет опорную, трофическую, разграничительную и защитную функции. По численности глиальных клеток в 10 раз больше, чем нейронов, и они занимают половину объема ЦНС. Основным функциональным элементом нервной ткани является нервная клетка - нейрон. Нервные клетки (нейроны) – специализированные клетки, производные эктодермы, не делятся, способны принимать, обрабатывать, кодировать, передавать и хранить информацию, организовывать реакции на раздражения, устанавливать контакты с другими нейронами и возбудимыми клетками. Именно через нейроны осуществляется передача информации от одного участка нервной системы к другому, обмен информацией между нервной системой и различными участками тела. В нейронах происходят сложнейшие процессы обработки информации. С их помощью формируются ответные реакции организма (рефлексы) на внешние и внутренние раздражения. Функциональная активность нейрона обеспечивается покрывающей его плазматической мембраной - полупроницаемой клеточной оболочкой, которая обеспечивает регуляцию концентрации ионов внутри клетки и ее обмен с окружающей средой. При возбуждении проницаемость клеточной мембраны изменяется, что играет важнейшую роль в возникновении потенциала действия и передаче нервных импульсов. Особо отметим, что сам нейрон не способен самостоятельно генерировать активность, он возбуждается нервными импульсами, поступающими с периферии от рецепторов по центростремительным нервным путям или от других нейронов. Кроме того, нервные клетки могут активироваться под влиянием гуморальных воздействий, например, клетки дыхательного центра.
Тела нервных клеток, суммируя приходящие к ним нервные импульсы, обеспечивают обработку поступающей информации, т.е. интегративную функцию. Результатом такой обработки является формирование на их мембране потенциала действия, основную роль в возникновении которого играет так называемый аксонный холмик, имеющий близкую к пороговой величину мембранного потенциала и потому легко возбуждающийся. Кроме того, тело нейрона выполняет трофическую функцию по отношению к отросткам, регулируя их обмен веществ. Многочисленные древовидно разветвленные отростки – дендриты – выполняют воспринимающую функцию и служат входами нейрона, по мембранам которых сигналы, то есть нервные импульсы, поступают к телу нервной клетки. Дендриты обычно образуют множество контактов с другими нервными клетками.
Рис 2. Миелинизация нервного волокна Периферические аксоны, кроме плазматической мембраны, окружены еще и оболочками, образованными различными видами глиальных клеток, эти оболочки образованы так называемыми Швановскими клетками - леммоцитами, описанными Т. Шванном в 1838 году. В зависимости от типа глиальных клеток образующих оболочки вокруг аксонов, различают безмякотные (немиелинизированные) нервные волокна в которых Швановские клетки формируют тонкую швановскую оболочку, заключающую в себе один или несколько аксонов, и мякотные (миелинизированные) нервные волокна покрытые тонкой шванновской и многослойной миелиновой оболочками. Миелиновая оболочка, состоящая из белого белково-липидного комплекса - миелина, (рис.2) образуется в результате многократного обертывания отростка Швановской клетки вокруг нервного волокна (его толщина может достигать 100 слоев) и выполняет изолирующую, опорную, барьерную, возможно трофическую и транспортную функции. Процесс миелинизации является важнейшим механизмом созревания ЦНС, т.к. отсутствие миелиновой оболочки ограничивает функциональные возможности нервного волокна и делает работу ЦНС слабо координированной. Поэтому миелинизация начинается еще во внутриутробном периоде и в основном заканчивается к третьему году жизни, однако окончательно завершается только к 30 – 40 годам. Миелиновая оболочка не сплошная, по ее ходу расположены узловые перехваты Ранвье, соответствующие границам между Швановскими клетками. В местах перехвата, участок аксона не покрыт миелиновой оболочкой. В зависимости от скорости проведения возбуждения, длительности фаз потенциала действия и диаметра у теплокровных выделяют 3 основных группы нервных волокон, (по Эрлангеру-Гассеру).
Нервные волокна в сумме составляют периферическую нервную систему и формируют проводящие пути в центральной нервной системе. Нервные волокна заканчиваются концевыми нервными аппаратами, называемыми нервными окончаниями. Различают три вида нервных окончаний: эффекторы (эффекторные), рецепторы (чувствительные) и межнейронные связи — синапсы. Эффекторы бывают двигательными и секреторными. Двигательные окончания представляют собой концевые аппараты аксонов мотонейронов преимущественно передних рогов спинного мозга, соматической или вегетативной нервной системы. Двигательные окончания в поперечно-полосатой мышечной ткани называют нервно-мышечными окончаниями (нервно-мышечными синапсами) или моторными бляшками. Моторные нервные окончания в гладкой мышечной ткани имеют вид пуговчатых утолщений или четкообразных расширений. Секреторные окончания выявлены на железистых клетках. Рецепторы (receptores) представляют собой концевые аппараты дендритов чувствительных нейронов. Их строение функционирование и классификации будут подробно рассмотрены в разделе «Физиология сенсорныз систем». Собственно межнейрональные синапсы — это места контактов двух нейронов. Строение, классификация и механизм функционирования рассмотрены ниже (см. п.4) Группы нервных волокон образуют нервы. Нервы (nervus) - тяжи нервной ткани, связывающие мозг и нервные узлы с другими тканями и органами тела. Нервы образованы пучками нервных волокон (аксонов), по аналогии это можно сравнить с многожильным телефонным кабелем, где каждый отдельный провод заизолирован и имеет определенного, точного адресата. Точность доставки сигнала имеет важнейшее значение в формировании адекватного ответа, и обеспечивается тем, что по каждому волокну нервный импульс распространяется изолированно, не переходя на другие волокна, благодаря наличию миелиновых оболочек. Кроме того, каждый нервный пучок окружен соединительнотканной оболочкой (периневрием), а весь нерв покрыт общей оболочкой (эпиневрием). Обычно нерв состоит из 103-104 волокон, у человека в зрительном нерве их даже свыше миллиона. Различают, чувствительные (афферентные, центростремительные), двигательные (эфферентные, центробежные) и смешанные нервы. У позвоночных от спинного мозга отходят спиномозговые нервы, а от головного - черепномозговые. Несколько соседних нервов могут образовывать нервные сплетения. По характеру иннервируемых органов нервы классифицируют на вегетативные и соматические, совокупность которых и образует периферическую нервную систему.
|
|||||||||||||||||||||||||||||||||||||
|
Последнее изменение этой страницы: 2016-08-26; просмотров: 647; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 216.73.216.102 (0.012 с.) |