Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Определение содержания анионов в поверхностных водахСодержание книги
Поиск на нашем сайте
В поверхностных водах, кроме анионов HCO3-, СО32-, OН-, которые определялись в предыдущих работах, содержится ряд других анионов (SO42-, Cl-, HSiO3-, NO3-, PO43- и др.). Сульфат-ионы поступают в природные воды в результате растворения гипсовых пород, мирабилита, окисления сульфидов, органических серо-содержащих веществ. Содержание сульфат-ионов может быть достаточно высоким в водах атмосферных осадков вследствие загрязнения воздуха промышленными выбросами. Предельное содержание сульфат-ионов в воде источника централизованного водоснабжения – до 500 мг/л. Хлориды по общему содержанию в природных водах занимают первое место среди анионов. Они появляются в природных водах при растворении горных пород, содержащих хлориды, выбрасываются в большом количестве при извержении вулканов, являются постоянным компонентом стоков многих предприятий. Содержание их колеблется от десятых долей до тысячи мг/л. Однако в воде рек концентрация хлоридов невелика – она превышает обычно 10-30 мг/л, поэтому повышенное количество хлоридов указывает на загрязнение источника сточными водами. Концентрация хлорид-ионов не должна превышать для питьевой воды 350 мг/л. Лимитирование верхнего предела концентраций SO42- и Cl- обусловлено тем, что более высокие концентрации этих ионов придают воде солоноватый вкус и могут вызвать нарушение в работе желудочно-кишечного тракта у людей. При некоторых соотношениях SO42- и Cl- вода становится агрессивной по отношению к некоторым типам бетона. В природных водах кремниевая кислота может находиться в формах метакремниевой H2SiO3 (H2О·SiO2), ортокремниевой H4SiO4 (SiO2·2H2О) и поликремниевой H2SiO5 (2SiO2·H2О) кислот. Все эти кислоты при обычных для природных вод значениях рН малорастворимы и образуют в воде коллоидные растворы. Силикаты – нежелательная примесь в воде, питающей котлы, так как дает силикатную накипь на стенках котлов. Нитраты могут появляться в воде при разложении органических остатков, поступать с атмосферными осадками или стоками, содержащими органические вещества. Содержание их в чистых водоемах оценивается десятыми и сотыми долями мг/л. Допустимое содержание нитратов (по NO3-) в воде питьевого назначения – 45 мг/л. Присутствие ряда анионов в воде является необходимым для питания растений, нормальной жизнедеятельности плавающих форм живых организмов. Однако избыток анионов может угнетать живые организмы. Избыток нитрат- и фосфат-ионов может привести к эвтрофикации водоемов. Содержание фосфатов в поверхностных водах обычно невелико – сотые и тысячные доли мг/л. Допустимое содержание в питьевой воде – 3,5 мг/л. Под эвтрофикацией вод понимают обогащение их биогенными элементами (азотом, фосфором, углеродом или веществами, их содержащими); следствие эвтрофикации – интенсивный рост водорослей и других растений, накопление в водоемах органических веществ и других продуктов отмирания организмов. Это создает условия дляувеличения численности организмов-редуцентов, питающихся мертвым органическим веществом и разлагающих его до исходных минеральных элементов и СО2. Редуценты в процессе жизнедеятельности интенсивно поглощают кислород. Конечный результат явлений – обескислороживание водной среды и замена аэробных (с участием кислорода) процессов на анаэробные, протекающие в бескислородной среде. Результат анаэробных процессов – выделение в среду сероводорода, метана и других ядовитых загрязняющих веществ. Таким образом, обогащение вод необходимыми для жизни химическими элементами вызывает вторичный крайне отрицательный экологический и санитарно-гигиенический эффект. Явление вызывается природными и антропогенными факторами. Различия в их действии связаны не только с интенсивностью, но и с механизмом отдельных процессов. При эвтрофикации развиваются сине-зеленые водоросли, многие из которых ядовиты. Выделяемые ими вещества относятся к группе фосфор- и серосодержащих органических соединений (нервнопаралитических ядов). Природная эвтрофикация прoтекает как правило, медленно и зависит от минералогического состава пород и грунтов, окружающих водоемы. Водоемы с большими запасами воды и расположенные среди кристаллических пород мало подвержены эвтрофикации. Они в течение тысячелетий могут оставаться в олиготрофиом (бедном питательными веществами) состоянии. Пример такого водоема – озеро Байкал. Медленная эвтрофикация характерна также для озер ледникового происхождения. Это основные резервуары озерной чистой воды. Такие водоемы вместе с тем в силу малой насыщенности жизнью и низких температур имеют слабую способность к самоочищению. Поэтому они весьма чувствительно реагируют на загрязнения. Антропогенной эвтрофикации в настоящее время подвержены практически все внутренние водоемы и некоторые моря. Факторами ее являются минеральные удобрения, а в ряде случаев моющие средства, компоненты которых – поверхностно-активные вещества (ПАВ), изготавливаемые на фосфорной основе. Источниками эвтрофикации вод являются также бытовые и промышленные стоки, животноводческие комплексы, подогретые воды, рекреационные воздействия, преобразования текущих вод в стоячие и другие результаты человеческой деятельности.
Цель работы: Определить содержание основных анионов в природной воде, дать характеристику исследуемой воде, указать возможные пути и последствия от поступления анионов в данный водоем. Оборудование: нитратомер ЭКО-01, нитратоселективный и хлорсеребряный электроды, пенал для определения фосфатного числа, бюретки для титрования, оловянная палочка. Реактивы: 0,028 нраствор нитрата серебра, раствор хромовокислого калия, раствор сульфомолибдата аммония, раствор KNO3 − 0,1 н. Порядок выполнения работы Определение хлорид-ионов Метод основан на титрометрическом осаждении хлоридов в нейтральной среде или слабощелочной среде нитратом серебра в присутствии бихромата калия в качестве индикатора. В пробу воды объемом 100 мл добавляют 10 капель раствора хромово-кислого калия, хорошо перемешивают и оттитровывают раствором азотнонокислого серебра. Раствор титранта добавляют до тех пор, пока в воде не появится устойчивый бурый оттенок, свидетельствующий об образовании хромата серебра. Содержание хлорид-ионов в пробе воды составит, мг/л: , где V1 – объем раствора нитрата серебра, пошедшего на титрование, мл; N1 – нормальность раствора нитрата серебра; Э – миллиграм-эквивалент хлора; V2 – объем исследуемой воды. Определение фосфатов Сущность заключается в том, что сульфомолибдатный раствор, введенный в испытуемую пробу воды в присутствии погруженной с нее оловянной палочки, реагирует с фосфатами, в результате чего вода окрашивается в синий цвет, интенсивность которого тем больше, чем выше концентрация фосфатов в воде. В мерную пробирку наливают 2 мл отфильтрованной пробы воды, доводят объем жидкости сульфомолибдатным раствором до 10 мл. Затем в раствор опускают очищенную наждачной бумагой и ополоснутую дистиллированной водой оловянную палочку. Через 5 мин (за это время раствор в пробирке вместе с оловянной палочкой должен быть 2...3 раза перемешен легким встряхиванием) оловянную палочку вместе с пробкой вынимают из пробирки и сравнивают окраску испытуемого раствора с окраской стандартной цветной шкалы. Для этого пенал, в котором находится штативчик с фосфатной шкалой, снимают с задней стенки лабораторного ящика, вынимают штативчик и в него вставляют (через верхнее отверстие) мерную пробирку так, чтобы она оказалась в специальном гнезде на фоне молочного стекла рядом с ячейками цветной шкалы. Позади штативчика должен находиться источник света расположенный так, чтобы окраска исследуемого раствора сравнивалась с окраской штатной шкалы в рассеянном проходящем свете. Фосфатное число воды соответствует цифре, стоящей против ячейки шкалы, окраска которой совпадает с окраской раствора в пробирке или наиболее близка к ней. Результаты определения выражены в виде концентраций фосфат ионов PO43- (мг/л). Фосфатную шкалу следует хранить в футляре. Она должна быть на свету только во время колориметрирования. Определение нитратов Определение нитратов проводят с помощью нитратомера, используя ионоселективный электрод. Предварительной частью работы является подготовка нитратомера. Сначала электроды готовят к работе. Для этого внутрь хлорсеребряного электрода (вспомогательного) заливают насыщенный раствор KCl и выдерживают сутки в стакане с насыщенным раствором. Между испытаниями такой электрод хранят в дистиллированной воде. Ионоселективный электрод ЭМ-NO3-01 заполняют после промывки при-электродным раствором, который содержит 10,11 г KNO3 и 0,37 г KCl на 1 л раствора. Выдерживают в растворе KNO3 с концентрацией 10-1 моль/л в течение суток. Приготовленные таким образом электроды готовы к работе. Их подключают в соответствующие гнезда прибора и производят калибровку системы. Для этого электроды сначала погружают в 10-4 М раствор KNO3 и включают прибор нажатием кнопки "вкл". Затем нажимают кнопку "изм". ВНИМАНИЕ! Эту кнопку можно нажимать только в том случае, если электроды погружены в раствор. С помощью регулировки ручек выставляется "0" на шкале прибора. Отжать кнопку "изм" и перенести электроды, предварительно вымыв в дистилляте и высушив фильтровальной бумагой, в стандартный раствор с концентрацией 10-3 М KNO3. Нажать кнопку "изм" и ручкой "крутизна" выставить значение 56 мВ (при нажатой кнопке "диап" шкала прибора соответствует 100 мВ, при отжатой – 200 мВ). Для проверки правильности калибровки перенести электроды в 10-2 М раствор KNO3. Показания прибора должны соответствовать 112 мВ. Если показания не соответствуют 112 мВ, произвести повторную настройку прибора по растворам. Непосредственные измерения заключаются в следующее. В пробу воды помещают электроды, включают прибор и через 1...2 мин снимают показания прибора. Сравнивая показания прибора с данными настройки, рассчитывают содержание нитрат-ионов в исследуемой пробе. Требования к отчету В отчете приводится описание хода выполнения работы, результаты расчета содержания анионов. Сделать предположение о характере подстилающих пород и поступающих стоков. Выявить последствия для водной экосистемы от избыточного поступления анионов.
Лабораторная работа № 7
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 749; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.220.239 (0.008 с.) |