Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Частотний коефіцієнт передачі узгодженого фільтра. Фізична інтерпретація роботи узгодженого фільтру.Содержание книги
Поиск на нашем сайте
Прежде всего вычислим спектральную плотность полезного сигнала: 16.31 Отсюда КСОГЛ(j)=kS*()e-jt0 16.25 т.е. частотный коэффициент передачи согласованного фильтра выражается через спектральную плотность полезного сигнала, для выделения которого этот фильтр предназначен. Множитель пропорциональности k в формуле (16.25) определяет уровень усиления, вносимого фильтром. Значение момента времени t0 входит лишь в выражение фазовой характеристики фильтра. При этом сомножитель exp(-jt0) описывает смешение выходного отлика фильтра по оси времени на величину t0. Таким образом на основании (16.25) находим частотный коэффициент передачи согласованного фильтра, положив для конкретности t0=u, т.е. что отклик фильтра максимален в момент окончания импульса: 16.32 Согласованный фильтр — линейный оптимальный фильтр, построенный исходя из известных спектральных характеристик полезного сигнала и шума. Согласованные фильтры предназначены для выделения сигналов известной формы на фоне шумов. Критерием оптимальности таких фильтров является получение на выходе максимально возможного отношения амплитудного значения сигнала к действующему значению помехи. Принцип работы известного согласованного фильтра заключается в реализации временного выходного отклика в соответствии с уравнением где Здесь S(x) представляет собой прямоугольный видеоимпульс с амплитудой V и длительностью и; gопт(t)=A·S(х) - импульсная характеристика согласованного фильтра, с точностью до константы А совпадающая с самим видеоимпульсом. Физически выходной сигнал фильтра воспроизводит во времени автокорреляционную функцию прямоугольного видеоимпульса, которая имеет треугольную форму и достигает максимума в момент t= и. Известный согласованный фильтр максимизирует отношение сигнал/шум на выходе, искажая форму выходного сигнала. Недостатком известного фильтра является низкая помехоустойчивость в условиях импульсных помех, длительность которых не совпадает с длительностью полезного сигнала, а также в условиях помех типа «шумовых вспышек». Этот недостаток обусловлен накоплением помех, которое зависит от постоянной интегрирования фильтра и амплитуды помехи. Поскольку в реальных условиях все виды помех естественного и искусственного происхождения, как правило, превышают амплитуду полезного сигнала, их накопление, включая «короткие» помехи длительностью к< и, таково, что выходные сигналы помех соизмеримы, либо превышают полезный сигнал, вызывая ложные срабатывания оконечных устройств. Фактически все импульсные помехи для прототипа являются помехами коррелированными. Это же в значительной мере относится и к помехам типа «шумовых вспышек», представляющим собой совокупность шумовых выбросов случайной длительности и амплитуды (соизмеримых или превышающих полезный сигнал), локализованных на ограниченном временном интервале. Задача, на решение которой направлено заявляемое устройство, состоит в компенсации импульсных помех и помех типа «шумовых вспышек». Технический результат, на достижение которого направлено предлагаемое изобретение, заключается в повышении помехоустойчивости фильтра в условиях импульсных помех и помех типа «шумовых вспышек». 2. Діод Ганна: структура, принцип роботи, характеристики та застосування. Диод Ганна (изобретён Джоном Ганном в 1963 году) — тип полупроводниковых диодов, использующийся для генерации и преобразования колебаний в диапазоне СВЧ на частотах от 0,1 до 100 ГГц. В отличие от других типов диодов, принцип действия диода Ганна основан не на свойствах p-n-переходов, т.е. все его свойства определяются не эффектами, которые возникают в местах соединения двух различных полупроводников, а собственными свойствами применяемого полупроводникового материала. В отечественной литературе диоды Ганна называли приборами с объемной неустойчивостью или с междолинным переносом электронов, так как активные свойства диодов обусловлены переходом электронов из "центральной" энергетической долины в "боковую", где они уже могут характеризоваться малой подвижностью и большой эффективной массой. В иностранной же литературе диоду Ганна соответствует термин ТЭД (Transferred Electron Device). На основе эффекта Ганна созданы генераторные и усилительные диоды, применяемые в качестве генераторов накачки в параметрических усилителях, гетеродинов в супергетеродинных приемниках, генераторов в маломощных передатчиках и в измерительной технике. При создании низкоомных омических контактов, необходимых для работы диодов Ганна, существуют два подхода. Первый из них заключается в поисках приемлемой технологии нанесения таких контактов непосредственно на высокоомный арсенид галлия. Второй подход заключается в изготовлении многослойной конструкции генератора. В диодах такой структуры на слой сравнительно высокоомного арсенида галлия, служащего рабочей частью генератора, наращивают с двух сторон эпитаксиальные слои относительно низкоомного арсенида галлия с электропроводностью n-типа. Эти высоколегированные слои служат переходными прослойками от рабочей части прибора к металлическим электродам. Диод Ганна традиционно состоит из слоя арсенида галлия с омическими контактами с обеих сторон. Активная часть диода Ганна обычно имеет длину порядка l = 1-100 мкм и концентрацию легирующих донорных примесей n = 1014 − 1016 см−3. В этом материале в зоне проводимости имеются два минимума энергии, которым соответствуют два состояния электронов — «тяжёлые» и «лёгкие». В связи с этим с ростом напряжённости электрического поля средняя дрейфовая скорость электронов увеличивается до достижения полем некоторого критического значения, а затем уменьшается, стремясь к скорости насыщения. Таким образом, если к диоду приложено напряжение, превышающее произведение критической напряжённости поля на толщину слоя арсенида галлия в диоде, равномерное распределение напряжённости по толщине слоя становится неустойчиво. Тогда при возникновении даже в тонкой области небольшого увеличения напряжённости поля электроны, расположенные ближе к аноду, «отступят» от этой области к нему, а электроны, расположенные у катода, будут пытаться «догнать» получившийся движущийся к аноду двойной слой зарядов. При движении напряжённость поля в этом слое будет непрерывно возрастать, а вне его — снижаться, пока не достигнет равновесного значения. Такой движущийся двойной слой зарядов с высокой напряжённостью электрического поля внутри получил название домена сильного поля, а напряжение, при котором он возникает — порогового. В момент зарождения домена ток в диоде максимален. По мере формирования домена он уменьшается и достигает своего минимума по окончании формирования. Достигая анода, домен разрушается, и ток снова возрастает. Но едва он достигнет максимума, у катода формируется новый домен. Частота, с которой этот процесс повторяется, обратно пропорциональна толщине слоя полупроводника и называется пролетной частотой.
Диоды Ганна, работающие в различных режимах, используются в диапазоне частот 1-100 ГГц. В непрерывном режиме реальные генераторы на диодах Ганна имеют КПД порядка 2-4% и могут обеспечить выходную мощность от единиц мВт до единиц Вт. Но при переходе в импульсный режим КПД увеличивается в 2-3 раза. Специальные резонансные системы, позволяющие добавить к мощности полезного выходного сигнала некоторые высшие гармоники, служат для увеличения КПД и такой режим называется релаксационным. Существуют несколько разных режимов, в одном из которых генератор на диоде Ганна может совершать работу, в зависимости от питающего напряжения, температуры, свойства нагрузки: доменный режим, гибридный режим, режим ограниченного накопления объемного заряда и режим отрицательной проводимости. Наиболее часто используемым режимом является доменный режим, для которого в течение значительной части периода колебаний, характерен режим существования дипольного домена. Доменный режим может иметь три различных вида: пролетный, с задержкой образования доменов и с гашением доменов, которые получаются при изменении сопротивления нагрузки. Для диодов Ганна был так же придуман и осуществлен режим ограничения и накопления объемного заряда. Его существование имеет место, при больших амплитудах напряжения на частотах, в несколько раз больше пролетной частоты и при постоянных напряжениях на диоде, которые в несколько раз превышают пороговое значение. Однако существуют требования для реализации к данному режиму: нужны диоды с очень однородным профилем легирования.Однородное распределение электрического поля и концентрации электронов по длине образца обеспечивается за счет большой скорости изменения напряжения на диоде.
Наряду с арсенидом галлия и фосфидом индия InP (до 170 ГГц) методом эпитаксиального наращивания, для изготовления диодов Ганна также используетсяи нитрид галлия (GaN) на котором и была достигнута наиболее высокая частота колебаний в диодах Ганна — 3 ТГц. Диод Ганна имеет низкий уровень амплитудных шумов и низкое рабочее напряжение питания (от единиц до десятков В). Эксплуатация диодов происходит в резонансных камерах представляющие собой в виде микросхем на диэлектрических подложках с резонирующими емкостными и индуктивными элементами, либо в виде комбинации резонаторов с микросхемами.
Вольт-амперная характеристика диода Ганна
|
||||
Последнее изменение этой страницы: 2016-08-16; просмотров: 265; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.21.46.24 (0.01 с.) |