Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Transformation of solutions and system.Содержание книги
Поиск на нашем сайте
The transformation of the kth derivative of a function in on variable is a follows: Y (k) =1/ k![ dky/dxk (x)] x = x 0, (1) and the inverse transformation is defind by, y (x) =S ∞k =0 Y (k)(x − x 0) k, (2) The following theorems that can be deduced from equations (1) and (2) are given below: Theorem 1. If y (x) = y 1(x) ± y 2(x),then Y (k) = Y 1(k) ± Y 2(k). Theorem 2. If y (x) = cy 1(x), then Y (k) = cY 1(k),where c is a constant. Theorem 3. If y (x) = dny 1(x)/ dxn, then Y (k) = (k + n)! / k! Y 1(k + n). Theorem 4. If y (x) = y 1(x) y 2(x), then Y (k) =S k,k 1=0 Y 1(k 1) Y 2(k − k 1). Theorem 5. If y (x) = xn, then Y (k) = δ (k−n) where δ (k−n) = 1 k = n 0 k ¹ n Theorem 6. If y (x) = eλx, then Y (k) = λk k!,where λ is a constant. Theorem 7. If y (x) = sin(ωx + α), then Y (k) = ωk k! sin(kπ/ 2 + α), where ω and α constants. Theorem 8. If y (x) = cos(ωx + α), then Y (k) = ωk/k! cos(kπ/ 2 + α), where ω and α constants.
Consider the following system of liner differential equations
y_ 1(x) = y 1(x) + y 2(x) (1) y_ 2(x) = −y 1(x) + y 2(x)
with the conditions y 1(0) = 0 y 2(0) = 1 (2) By using Theorems 1,2 and 3 choosing x 0 = 0,equations (1) and (2) are transformed as follows: (k + 1) Y 1(k + 1) − Y 1(k) − Y 2(k) = 0 (k + 1) Y 2(k + 1) + Y 1(k) − Y 2(k) = 0 Y 1(0) = 0, Y 2(0) = 1, consequently, we find Y 1(1) = 1, Y 2(1) = 1 Y 1(2) = 1, Y 2(2) = 0 Y 1(3) = 1/3, Y 2(3) = − 1/3 Y 1(4) = 0, Y 2(3) = − 1/6 Y 1(5) = − 1/30, Y 2(5) = − 1/30. ... ... Therefore, from(4),the solution of equation(11) is given by y 1(x) = x + x 2 + 1/3 x 3 – 1/30 x 5 ± O (x 6), y 2(x) = 1+ x – 1/3 x 3 – 1/6 x 4 ± O (x 5).
Basic concepts. Stability by Lyapunov. Geometric means. Definition1. Stability in the sense of Lyapunov The equilibrium point x*=of is stable(in the sense of Lyapunov) at t=t0 if for any e>0 there exists a b(t0;e)>0 such that ||x(t0)||<b => ||x(t)||<e, any t>t0. Definition2.Asymptotic stability An equilibrium point x*=0 of is asymptotically stable at t=t0 if 1.x*=0 is stable, and 2.x*=0 is locally attractive; i.e., there exists b(t0) such that ||x(t0)||<b =>limx(t)=0 Definition3. Exponential stability, rate of convergence The equilibrium point x*=0 is an exponentially stable equilibrium point of if there exist constants m,a>0 and e>0 such that ||x(t)||≤m*exp(-a(t-t0))||x(t0)|| for all ||x(t0)|| ≤e and t≥t0. The largest constant a which may be utilized in ||x(t)||≤m*exp(-a(t-t0))||x(t0)|| is called the rate of convergence. Exponential stability is a strong form of stability; in partial, it implies uniform, asymptotic stability. Exponential convergence is important in applications because it can be shown to be robust to perturbations and is essential for the consideration of more advanced control algorithms,
Orbital stability The orbital stability differs from the Lyapunov stabilities in that it concerns with the stability of a system output (or state) trajectory under small external perturbations. n Let f(x) be a p-periodic solution, p>0, of the autonomous system x(t)=f(x), x(t0)=x0?۠۠۠R and let Г represent the closed orbit of f(x) in the state space, namely, Г={y|y=f(x0),0≤t<p} If, for any e>0, there exists a constant b=b(e)>0 such that d(x0, Г):=inf||x0-y||<b the solution of the system, f(x) satisfies d(f(x), Г) < e, for all t≥t0 then this p-periodic solution trajectory, f(x) is said to be orbitally stable.
The main Lyapunov theorems. Basic theorem of Lyapunov Let V(x,t) be a non-negative function with derivative V’ along the trajectories of the system. 1.If V(x,t) is locally positive definite and V’(x,t) ≤0 locally in x and for all t, then the origin of the system is locally stable(in the sense of Lyapunov) 2.If V(x,t) is locally positive definite and decrescent,and V’(x,t) ≤0 locally in x and for all t, then the origin of the system is uniformly locally stable(in the sense of Lyapunov) 3. If V(x,t) is locally positive definite and decrescent, and -V’(x,t) ≤0 locally positive definite, then the origin of the system is uniformly locally asymptotically stable 4.If V(x,t) is locally positive definite and decrescent, and -V’(x,t) ≤0 locally positive definite, then the origin of the system is uniformly locally asymptotically stable Theorem. Exponential stability theorem x*=0 is an exponentially stable equilibrium point of x’=f(x,t) if and only if there exists an e>0 and a function V(x,t) which satisfies
29.Chetaev theorem nn n Theorem. [adapted from Chetaev 1934].Suppose E? R is open, 0? E, f;E→R and V: E→R are continuously differentiable, f(0)=0, V(0)=0. Suppose U an open neighborhood of 0 with compact closure F=U?E such that the restriction of V’=(DV)f to F∩V pow-1(0,∞) is strictly positive. If for every open neighborhood W?R pow n of 0 the set W∩W pow -1 (0,∞) is nonempty, then the origin is an unstable equilibrium of x’=f(x). Proof: 1.Assume above hypotheses 2.Let W be an open neighborhood of 0?R pow n 3There exists z?W∩V pow -1(0,∞).Define a=V(z)>0 4.The set K=F∩ V pow -1[a,∞) is compact, and it is nonempty since z?K 5Using the contiuity of V and V’ there exist m=minV’(x) and M=maxV(x) 6 Since K=F∩ V pow -1[a,∞)? F∩ V pow -1[a,∞) it follows that m>0 7 Let I? [0,∞) be the maximum interval of existence for empty set:I→E such that empty(0)=z 8 Define the set T={t? I: for all s?[0,t], empty set(s)=K } 9.For all t? T d/dt(V*empty set)(t)=(V’*empty set)(t)>m 10Hence for all t? T V(empty set(t))=V(empty set(0))+∫V(empty(s))ds≥a+mt 11 Since V is bounded above by M,T is also bounded above.Let t0 the least bounded of T. 12 Since K?E,I [0,t0] and empty(t0) is well-defined. Moreover t0 lies in the interior of I. 13 Since for all t?[0,t0),empty(t0)?K and for every b>0 there exist t?I,t0<t<t0+b such that it follows that empty(t0) lies on the boundary of the set K. 14 The boundary of K is contained in the union ӘK?V pow -1(a)U (F\U) 15 Since V(empty(t0))>a+m*t0>a it follows that empty(t0)? not V(a)pow -1 16 Therefore empty(t0)?(F\U) and in particular empty(t0)? not U 17 Since W was arbitrary this shows that the origin is an unstable equilibrium point of f.
|
||||
Последнее изменение этой страницы: 2016-08-14; просмотров: 181; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.218.21.96 (0.005 с.) |