Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Виды конструкционных материалов

Поиск

Конструкционные материалы, используемые в химическом машиностроении, условно делятся на четыре класса: стали, чугуны, цветные металлы и сплавы, неметаллические материалы.

Стали

Стали наиболее часто применяют в химической промышленности, так как они лучше других материалов удовлетворяют вышеперечисленным требованиям. Сталь представляет собой сплав железа с углеродом, содержание которого не превышает 1—2%. Кроме того, в состав стали входят примеси кремния, марганца, а также серы и фосфора.

Стали по химическому составу делятся на несколько групп:

углеродистые обыкновенного качества;

углеродистые конструкционные;

легированные конструкционные и др.

Сталь углеродистая обыкновенная делится на несколько категорий — 1, 2, 3, 4, 5, 6 — чем больше номер, тем выше механическая прочность стали и ниже ее пластичность. Свойства углеродистой стали обыкновенного качества значительно повышаются после термической обработки, которая для проката может выражаться в его закалке либо непосредственно после проката, либо после специального нагрева. Термическая обработка низкоуглеродистых сталей не только улучшает механические свойства сталей, но и приносит значительный экономический эффект.

Стали углеродистые конструкционные выпускаются следующих марок: 08, 10, 15, 20, 25, 30, 40, 45, 55, 58 и 60. Для улучшения физико-механических характеристик сталей и придания им особых свойств (жаропрочность, кислотостойкость, жаростойкость и др.) в их состав вводят определенные легирующие добавки.

Наиболее распространенные легирующие добавки:

хром (X) — повышает твердость, прочность, химическую и коррозионную стойкость, термостойкость;

никель (Н) — повышает прочность, пластичность и вязкость;

вольфрам (В) — повышает твердость стали, обеспечивает ее самозакаливание;

молибден (М) — повышает твердость, предел текучести при
растяжении, вязкость, улучшает свариваемость;

марганец (Г) — повышает твердость, увеличивает коррозионную стойкость, понижает теплопроводность;

кремний (С) — повышает твердость, прочность, пределы текучести и упругости, кислотостойкость;

ванадий (Ф) — повышает твердость, предел текучести при растяжении, вязкость, улучшает свариваемость стали и увеличивает стойкость к водородной коррозии;

титан (Т) — увеличивает прочность и повышает коррозионную стойкость стали при высоких (> 800 °С) температурах.

Обычно в состав легированных сталей входят несколько добавок. По общему содержанию легирующих добавок легированные стали делят на три группы:

низколегированные — с содержанием добавок до 3%;

среднелегированные — с содержанием добавок от 3 до 10%;

высоколегированные — с содержанием добавок > 10%.

Существенное значение для улучшения качества стали имеет химикотермическая обработка, т.е. процесс насыщения поверхности стали различными элементами с целью упрочнения ее поверхностного слоя, увеличения поверхностной твердости, жаростойкости и химической стойкости.

К основным видам химико-термической обработки изделий из стали относятся:

цементация — процесс насыщения поверхностного слоя углеродом, что улучшает его прочность и твердость;

азотирование — процесс насыщения поверхностного слоя азотом, что повышает стойкость изделий к истиранию и атмосферной коррозии;

алитировани е — процесс диффузионного насыщения поверхностного слоя алюминием, что повышает стойкость к окислению при высоких температурах;

хромирование — поверхностное насыщение изделий хромом, что значительно повышает твердость, износостойкость и коррозионную стойкость в воде, азотной кислоте, атмосфере и газовых средах при высоких температурах.

Дальнейшее улучшение качества химико-термической обработки сталей развивается по двум направлениям: насыщение диффузионного слоя азотом и упрочнение деталей термоциклической обработкой в процессе насыщения. Основой новых технологических процессов стала нитроцементация со ступенчатым возрастанием расхода аммиака. Толщина слоя при этом увеличивается до 1—2 мм и более, возрастает его твердость.

3.1.2. Чугуны

Серые чугуны представляют собой сплав железа, углерода и других металлургических добавок: кремния, марганца, фосфора и серы. Содержание углерода в чугунах колеблется от 2,8 до 3,7%, при этом большая его часть находится в свободном состоянии (графит) и только около 0,8-0,9% находится в связанном состоянии в виде цементита (карбида железа — Fе3С). Свободный углерод выделяется в чугуне в виде пластинок, чешуек или зерен. По микроструктуре различают:

чугун серый — в структуре которого углерод выделяется в виде пластинчатого или шаровидного графита;

чугун белый — в структуре которого углерод выделяется в связанном состоянии;

чугун отбеленный — в отливках которого внешний слой имеет структуру белого чугуна, а сердцевина — структуру серого чугуна;

чугун половинчатый — в структуре которого углерод выделяется частично в связанном, а частично в свободном виде.

Детали из чугуна изготавливают методом литья в земляных и металлических формах. Из чугуна получают детали сложной конфигурации, которые невозможно получить другими методами, например, ковкой или резанием.

Серый чугун является ценным конструкционным материалом, так как, имея сравнительно низкую стоимость, он обладает неплохими механическими свойствами. Существенным недостатком серых чугунов является их низкая пластичность. Поэтому ковка и штамповка серого чугуна даже в нагретом состоянии невозможна. Серые чугуны обладают низкой химической стойкостью, и детали из них не могут работать в агрессивных средах. Для повышения качества чугуна его модифицируют различными модификаторами, которые воздействуют на процессы кристаллизации жидкого чугуна, изменяя его механические свойства.

Различают ковкий чугун и высокопрочный чугун. Ковкий чугун (КЧ) отличается от серого чугуна пониженным содержанием углерода и кремния, что делает его более пластичным, способным выдерживать значительные деформации (относительное удлинение КЧ составляет 3—10%). Высокопрочный чугун (ВЧ) является разновидностью ковкого чугуна, высокие прочностные характеристики которого достигаются модифицированием присадками магния и его сплавов. Ковкий и высокопрочный чугуны идут на изготовление коленчатых валов, цилиндров малых компрессоров и других фасонных тонкостенных деталей.

Широкое применение в химическом машиностроении имеют легированные чугуны, в состав которых входят легирующие элементы: никель, хром, молибден, ванадий, титан, бор и др.

По суммарному содержанию легирующих добавок чугуны делят на три группы:

низколегированные — легирующих добавок до 3%;

среднелегированные — легирующих добавок от 3 до 10%;

в ысоколегированные — легирующих добавок более 10%.

Легирование позволяет существенно улучшить качество чугуна и придать ему особые свойства. Например, введение никеля, хрома, молибдена, кремния повышает химическую стойкость и жаропрочность чугуна; никелевые чугуны с добавкой меди (5—6%) надежно работают со щелочами; высокохромные (до 30% Сг) устойчивы к действию азотной, фосфорной и уксусной кислот, а также хлористых соединений; чугун с добавкой молибдена до 4% (антихлор) хорошо противостоит действию соляной кислоты.

 

Цветные металлы и их сплавы

Цветные металлы и их сплавы применяют в химическом машиностроении для изготовления элементов машин и аппаратов, работающих со средами средней и повышенной коррозионной активности и при низких температурах. В качестве конструкционных материалов используются алюминий, медь, никель, свинец, титан, тантал и их сплавы.

Алюминий. Обладает высокой стойкостью к действию органических кислот, концентрированной азотной кислоты, разбавленной серной кислоты, сравнительно устойчив к действию сухого хлора и соляной кислоты. Высокая коррозионная стойкость металла обусловлена образованием на его поверхности защитной оксидной пленки, предохраняющей его от дальнейшего окисления. Механические свойства алюминия в значительной степени зависят от температуры. Верхняя предельная температура применения алюминия 200oС. Алюминий не стоек к действию щелочей.

Медь. Взаимодействие меди с кислородом начинается при комнатной температуре и резко возрастает при нагревании с образованием пленки закиси меди (красного цвета). Медь сохраняет прочность и ударную вязкость при низких температурах и поэтому нашла широкое применение в технике глубокого холода. Медь не обладает стойкостью к действию азотной кислоты и горячей серной кислоты, относительно устойчива к действию органических кислот. Широкое распространение получили сплавы меди с другими компонентами: оловом, цинком, свинцом, никелем, алюминием, марганцем, золотом и др. Наиболее распространенными являются сплавы меди с цинком (латуни), с оловом (бронзы), с никелем (ЛАН), с железом и марганцем (ЛЖМ), цинком (до 10% цинка — томпак; до 20% — полутомпак; более 20% — константаны, манганины и др.).

Свинец обладает сравнительно высокой кислотостойкостью, особенно, к серной кислоте, вследствие образования на его поверхности защитной пленки из сернокислого свинца. Исключительно высокая мягкость, легкоплавкость и большой удельный вес резко ограничивают применение свинца в качестве конструкционного материала. Однако широкое применение в машиностроении нашли сплавы с использованием свинца в качестве легирующего компонента: свинцовая бронза, свинцовая латунь, свинцовый баббит (свинец, олово, медь, сурьма).

Никель обладает высокой коррозионной стойкостью в воде, в растворах солей и щелочей при разных концентрациях и температурах. Медленно растворяется в соляной и серной кислотах, не стоек к действию азотной кислоты. Широко применяется в различных отраслях техники, главным образом для получения жаропрочных сплавов и сплавов с особыми физико-химическими свойствами. Никель-медные сплавы обладают улучшенными механическими свойствами и повышенной коррозионной стойкостью.

Никельхромсодержащие жаропрочные сплавы. Никелевые сплавы, легированные хромом и вольфрамом, являются стойкими в окислительных средах. Никелевые сплавы с добавкой меди, молибдена и железа стойкие в неокислительных средах. Никель - медные сплавы с добавлением кремния стойкие в горячих растворах серной кислоты, а сплавы никеля с молибденом обладают повышенной стойкостью к действию соляной кислоты.

Титан и тантал. Титан химически стоек к действию кипящей азотной кислоты и царской водки всех концентраций, нитритов, нитратов, сульфидов, органических кислот, фосфорной и хромовой кислот. Однако изделия из титана в 8-10 раз дороже изделий из хромоникелевых сталей, поэтому применение титана в качестве конструкционного материала ограничено. Тантал химически стоек к действию кипящей соляной кислоты, царской водки, азотной, серной, фосфорной кислот. Однако не обладает стойкостью к действию щелочей. Титан и тантал по механическим свойствам не уступают высоколегированным сталям, а по химической стойкости намного превосходят их. Эти ценные металлы находят широкое применение в химическом машиностроении, как в чистом виде, так и в виде сплавов.

3.1.4. Неметаллические конструкционные материалы

Применение в химическом машиностроении неметаллических конструкционных материалов позволяет экономить дорогостоящие и дефицитные металлы.

Фторопласт (тефлон) — элементы конструкций из фторсодержащих полимеров обладают высокой стойкостью практически во всех агрессивных средах в широком интервале температур.

Углеграфитовые материалы — графит, пропитанный фенолформальдегидной смолой, или графитопласт, — прессованная пластмасса на основе фенолформальдегидной смолы с графитовым наполнителем. Обладают высокой коррозионной стойкостью в кислых и щелочных средах.

Стекло и эмали. Стекло применяется в качестве конструкционного материала в производствах особо чистых веществ. Эмали — специальные силикатные стекла, обладающие хорошей адгезией с металлом. Промышленностью выпускаются чугунные и стальные эмалированные аппараты, работающие в широком интервале температур от -15 до +250oС при давлениях до 0,6 Мпа.

Керамика выпускается кислотоупорный кирпич для футеровки химического оборудования, крупноблочная керамика для аппаратов башенного типа, например, в производстве серной кислоты. Керамические материалы обладают высокой устойчивостью ко многим агрессивным средам, исключение составляют щелочные среды. Трубопроводы из кислотостойкой керамики широко применяют для транспортировки серной и соляной кислот.

Фарфор обладает высокой стойкостью ко всем кислотам, за исключением плавиковой. Недостаточно стоек к действию щелочей. Фарфор используется в качестве конструкционного материала в производствах, где к чистоте продуктов предъявляются повышенные требования.

Винипласт термопластичная масса, обладающая высокой устойчивостью почти во всех кислотах, щелочах и растворах, за исключением азотной и олеума. Детали из винипласта надежно работают в интервале температур 0—40oС и давлении до 0,6 Мпа.

Асбовинил композиция из кислотостойкого асбеста и лака, обладающая сравнительно высокой стойкостью к действию большинства кислот и щелочей в интервале температур от -50 до +110 °С.

Полиэтилен, полипропилен — термопластичные материалы, стойкие к действию минеральных кислот и щелочей при условиях:

полиэтилен — температура от —60 до +60°С, давление до 1 М Па;

полипропилен — температура от —10 до +100°С, давление до 0,07 Мпа.

Фаолит — кислотостойкая пластмасса с наполнителями: асбест, графит, кварцевый песок. Используют при температуре до 140°С и давлении до 0,06 МПа. Фаолит стоек к действию многих кислот, в том числе серной (концентрацией до 50%), соляной (всех концентраций), уксусной, муравьиной (до 50%), фосфорной, а также бензола, но не стоек в растворах щелочей и окислителей.

Текстолит по механической прочности превосходит фаолит и отличается высокой стойкостью к агрессивным средам, в том числе к кислотам — серной (концентрацией до 30%), соляной (до 20%), фосфорной (до 25%), уксусной (всех концентраций). Верхний температурный предел применения текстолита 800С.

Пропитанный графит графит, полученный после прокалки каменноугольной смолы и пропитанный связующими смолами — фенол-формальдегидными, кремнеорганическими, эпоксидными и др. Вследствие хорошей теплопроводности пропитанного графита его широко применяют для изготовления теплообменников и трубопроводной арматуры. Пропитанный графит стоек во многих химически активных средах, в том числе в кислотах — азотной (низкой концентрации), плавиковой (концентрацией до 40%), серной (до 50%), соляной, уксусной, муравьиной, фосфорной. Некоторые сорта пропитанного графита стойки к действию щелочей.

Жаропрочный кислотостойкий бетон применяется для бетонирования днищ башенного оборудования сернокислотного производства, для изготовления фундаментов под оборудование. Надежно работает в условиях 900—1200°С. В последнее время находят применение полимербетоны на основе органических смол, которые обладают высокой стойкостью к действию концентрированных кислот, щелочей, бензола, толуола и фторсодержащих сред.

Природные силикатные материалы: диабаз, базальт, асбест, хризотил, андезит обладают высокой кислотостойкостью, исключение составляет хризотил, который не стоек в кислотах, но устойчив к действию щелочей. Все эти материалы обладают хорошими физико-механическими свойствами и широко используются в качестве конструкционных теплоизоляционных и футеровочных материалов.

Коррозия металлов и сплавов

Коррозией называется процесс разрушения материалов в результате взаимодействия с агрессивной средой. Конструкционные материалы для химического машиностроения должны обладать высокой коррозионной стойкостью, т.е. способностью противостоять коррозионному воздействию среды. Коррозионная стойкость понятие относительное, так как зависит от многих факторов: вида агрессивной среды, конструкции химически активного компонента, скорости движения среды, температуры, давления и др. Например, углеродистая сталь вполне устойчива к действию концентрированной серной кислоты, но не стойка к действию разбавленной серной кислоты. Многие силикатные материалы устойчивы к действию серной кислоты любой концентрации, однако, не стойки к действию плавиковой кислоты. Коррозионная стойкость металлов оценивается различными методами. Одним из наиболее распространенных является метод оценки по глубинному показателю коррозии (скорости коррозии). Глубинный показатель коррозии — это величина, характеризующая уменьшение толщины металла в течение года вследствие коррозии.

Согласно ГОСТ все конструкционные материалы по коррозионной стойкости делятся на группы и оцениваются по десятибалльной шкале. Так, материалы для химического машиностроения должны иметь балл не более 5, что соответствует скорости коррозии 0,1 мм/год. Для конструкционных материалов менее ответственных деталей химического оборудования скорость коррозии допускается до 0,5 мм/год.

Виды коррозии

Коррозия металлов может протекать по химическому и электрохимическому механизму.

Электрохимическая коррозия — возникает при действии на металл электролитов и влажных газов и характеризуется наличием двух параллельно идущих процессов: окислительного (растворение металла) и восстановительного (выделение металла из раствора). Этот вид коррозии сопровождается протеканием электрического тока в результате образования микрогальванических элементов. Возникновение коррозионных разрушений в металле связано с неоднородностью металла, присутствием примесей, нарушением структуры металла или защитного слоя, непостоянством состава раствора, неравномерностью деформаций различных участков, разностью температур и другими факторами.

Скорость электрохимической коррозии зависит от концентрации и скорости движения раствора, состава и структуры металла, растворимости продуктов коррозии на анодных и катодных участках, температуры, давления и др.

Химическая коррозия — возникает при действии сухих газов и жидких неэлектролитов на металлы, а также при действии электролитов на неметаллы. Механизм химической коррозии сводится к диффузии ионов металла сквозь постоянно утолщающуюся пленку продуктов коррозии и встречной диффузии атомов или ионов кислорода. Примером химической коррозии является газовая коррозия — процесс взаимодействия металлов при высоких температурах и давлениях с кислородом или другими газами. В результате этого процесса на поверхности металлов образуется оксидная пленка, которая во многих случаях обладает защитными свойствами. Толщина такой пленки может меняться от 1—5 мм до десятых долей миллиметра. Хорошими защитными свойствами обладают оксидные пленки, у которых коэффициент линейного термического расширения (КЛТР) близок к значению КЛТР металла.

Скорость химической коррозии значительно зависит от температуры и давления.

При повышенных температурах вследствие химической коррозии происходит процесс обезуглероживания углеродистых сталей:

Fe3C + O2 ® 3Fe + CO2

Fe3C + CO2 ® 3Fe + 2CO

Fe3C + 2H2O ® 3Fe + CO2 + 2H2

При повышенных температурах и давлениях обезуглероживание может происходить за счет гидрирования (водородная коррозия):

Fe3C + 2H2® 3Fe + CH4

При сравнительно низких температурах и высоких давлениях происходит разрушение металла в результате воздействия на него оксида углерода с образованием карбонилов (карбонильная коррозия):

Mе + nCO →Мe(СО)n

Наличие механических воздействий в присутствии агрессивных сред приводит к возникновению коррозионной кавитации и коррозионной усталости металла, сопровождающихся серьезными коррозионными разрушениями. Коррозия в зависимости от характера коррозионных разрушений делится на сплошную и местную. Местная коррозия, в свою очередь, имеет несколько разновидностей: пятнистая, язвенная, подповерхностная и межкристаллитная.

 

Способы борьбы с коррозией

Известно большое количество способов защиты металлических поверхностей от коррозионного воздействия среды. Наиболее распространенными способами являются следующие:

- Гуммирование — защитное покрытие на основе резиновых смесей с последующей их вулканизацией. Покрытия обладают эластичностью, вибростойкостью, химической стойкостью, водо- и газонепроницаемостью. Для защиты химического оборудования применяют составы на основе натурального каучука и синтетического натрий-бутадиенового каучука, мягких резин, полуэбонитов, эбонитов и других материалов.

- Торкретирование — защитное покрытие на основе торкрет-растворов, представляющих собой смесь песка, кремнефторида натрия и жидкого стекла. Механизированное пневмонанесение торкрет-растворов на поверхность металла позволяет получить механически прочный защитный слой, обладающий высокой химической стойкостью ко многим агрессивным средам.

- Лакокрасочные покрытия — широко применяются для защиты металлов от коррозии, а неметаллических изделий — от гниения и увлажнения. Представляют собой жидкие или пастообразные растворы смол (полимеров) в органических растворителях или растительные масла с добавленными к ним тонкодисперсных минеральных или органических пигментов, наполнителей и других специальных веществ. После нанесения на поверхность изделия образуют тонкую (до 100— 150 мкм) защитную пленку, обладающую ценными физико-химическими свойствами. Лакокрасочные покрытия для металлов обычно состоят из грунтовочного слоя, обладающего антикоррозионными свойствами и внешнего слоя — эмалевой краски, препятствующей проникновению влаги и агрессивных ионов к поверхности металла. С целью обеспечения хорошего сцепления (адгезии) покрытия с поверхностью ее тщательно обезжиривают и создают определенную шероховатость, например, гидро- или дробе- и пескоструйной обработкой. Лакокрасочные покрытия термостойкие — покрытия способные выдерживать температуру более 100°С в течение определенного времени без заметного ухудшения физико-механических и антикоррозионных свойств. В зависимости от природы пленкообразующего компонента различают следующие виды термостойких лакокрасочных покрытий: этилцеллюлозные — при 100°С; алкидные на высыхающих маслах — при 120-150°С; фенольно-масляные, полиакриловые, полистирольные — при 200°С; эпоксидные — при 230—250°С; поливинилбутиральные — при 250—280°С; полисилоксановые, в зависимости от типа смолы — при 350-550°С, и др.

- Латексные покрытия — на основе водных коллоидных дисперсий каучукоподобных полимеров, предназначенных для создания бесшовного, непроницаемого подслоя под футеровку штучными кислотоупорными изделиями или другими футеровочными материалами. Латексные покрытия обладают хорошей адгезией со многими материалами, в том числе и с металлами. Они применяются в производствах фосфорной, плавиковой, кремнефтористо-водородной кислот, растворов фторсодержащих солей при температуре не более 100°С.

- Футерование химического оборудования термопластами. Защитное действие полимерных покрытий и футеровок в общем случае определяется их химической стойкостью в конкретной агрессивной среде, степенью непроницаемости (барьерная защита), адгезионной прочностью соединения с подложкой, стойкостью к растрескиванию и отслоению, зависящей от внутренних механических свойств полимера и подложки, неравновесностью процессов формирования защитных слоев и соединений. Наибольшее распространение при футеровании химического оборудования получили листы и пленки из полиэтилена (ПЭ), полипропилена (ПП), политетрафторэтилена (ПТФЭ), поливинилхлорида (ПВХ), пентапласта (ПТ) и других композиционных материалов. Для повышения физико-механических и защитных свойств, износостойкости листовые футеровочные материалы наполняют минеральными наполнителями (сажа, графит, сернокислотная обработка, ионная бомбардировка и др.). Для повышения адгезионной активности по отношению к клеям листовые материалы дублируют различными тканями.

Правильно выбранный способ антикоррозионной защиты позволит обеспечить максимальную долговечность защиты химического оборудования в конкретных условиях его эксплуатации.



Поделиться:


Последнее изменение этой страницы: 2016-08-12; просмотров: 2793; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 13.58.32.115 (0.011 с.)