Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Устройство кислородного конвертера.Содержание книги
Поиск на нашем сайте
Рис. 6 - Кислородный конвертер 1 - опорный подшипник; 2 - цапфа; 3 - защитный кожух; 4 - опорное кольцо; 5 - корпус ведомого колеса; 6 - навесной электродвигатель, с редуктором; 7 - ведомое зубчатое колесо; 8 - демпфер навесного электродвигателя; 9 - демпфер корпус ведомого колеса; 10 -опорная станина.
Большинство имеющихся конверторов имеет грушевидную форму с концентрической горловиной. Это обеспечивает лучшие условия для ввода в полость конвертора кислородной фурмы, отвода газов, заливки чугуна и завалки лома и шлакообразующих материалов. Днище с корпусом конвертора крепят при помощи клиновых соединений. Для уплотнения стыка днища и корпуса наносят слой огнеупорной массы. Кожух конвертора выполняется сварным из листов толщиной от 20 до 110 мм. Кислородная фурма вводится в конвертер строго по оси, что обеспечивает равное удаление кислородной струи от стенок конвертера и, следовательно, равномерный износ футеровки. Для повышения жесткости и для предохранения от быстрого износа верх горловины защищен сварным или литым шлемом. Горловина конвертора больше всего подвержена высокотемпературной пластической деформации вследствие теплоизлучения металла и газов в период плавки. Поэтому для увеличения срока службы горловины применяют водяное охлаждение или иногда горловину выполняют съемной. Огнеупорная футеровка кислородных конвертеров делается двух- или трехслойной. Арматурный слой толщиной 110-250 мм, примыкающий к кожуху, выполняют из магнезитового или магнезито-хромитового кирпича. Рабочий слой быстро изнашивается в процессе работы. Его толщина составляет 500-750 мм. Между арматурным и рабочим слоем делается набивка толщиной 50-100 мм из магнезито - или доломитосмоляной массы. Для кладки рабочего слоя используют необожженные смолодоломитовый и смолодоломитомагнезитовый кирпичи. Механизм поворота конвертора состоит из системы передач, связывающих цапфы с приводом. Конвертор может поворачиваться вокруг горизонтальной оси на 360о со скоростью от 0,01 до 2 об/мин. Для конверторов малой и средней емкости используют односторонний привод. Привод осуществляется от двух или нескольких электродвигателей. Для большегрузных конверторов вместимостью большее 200 т применяют двусторонний привод, например, четыре двигателя по два на каждую цапфу. В шлеме конвертора имеется летка для выпуска стали. Выпуск стали через летку позволяет уменьшить перемешивание металла и шлака. Летка закрывается огнеупорной глиной, замешанной на воде. Рис. 7 – Технологические операции конвертерной плавки: загрузки лома (а), заливка чугуна (б), начало продувки (в), замер температуры (г), слив металла (д), слив шлака (е): 1- газоотвод; 2 – полупортальная загрузочная машина; 3 – совок; 4 – мостовой кран; 5 – заливочный ковш; 6 – бункер; 7 – течка; 8 – термопара; 9 – бункер для ферросплавов; 10 – сталеразливочный ковш; 11 – шлаковая чаша (ковш). Ход плавки.
Исходные материалы для кислородно-конвертерной плавки: 1. металлолом (скрап); 2. жидкий чугун, поступающий из миксерного отделения цеха; 3. флюсы (известняк, доломит); 4. технический кислород (через специальную кислородную фурму, опускаемую в конвертер); 5. иногда добавляется окалина, сварочный шлак и сырая железная руда; 6. *отработанные автомобильные покрышки. Плавку начинают с загрузки в конвертер лома. Загрузку ведут через горловину завалочными машинами или кранами, которые опрокидывают лотки с ломом в наклоненный конвертер. Затем из заливочного ковша с помощью мостового крана через горловину наклоненного конвертера заливают жидкий чугун. После этого конвертер поворачивают в вертикальное рабочее положение и вводят фурму, включая подачу кислорода. Для ускорения шлакообразования продувку начинают при повышенном положении фурмы, а через 2-4 мин ее опускают до обычного оптимального положения. Фурма выполнена из 3-х концентрично расположенных стальных труб и снабжена снизу медной головкой с соплами. Головка фурмы является сменной. На ОАО ЗСМК используют пяти сопловые фурмы. Особенностью плавки является образование под кислородной фурмой зоны с температурой 2100-26000С. Продувка продолжается 12-20 мин и должна быть закончена на заданном для выплавляемой стали содержании углерода. Интенсивность продувки достигает 2000 м3/мин, не зависит от емкости; она определяется конструкцией кислородной фурмы. Имеется определенный уровень интенсивности продувки, после превышения которого начинаются выбросы металла и шлака из конвертера. Допустимый уровень интенсивности продувки тем выше, чем больше число сопел в фурме. При продувке кислородом в конвертер перед заливкой чугуна загружают лом. После слива чугуна конвертер устанавливают так, чтобы устье фурмы было погружено в металл на 50-100мм. Длительность продувки составляет 10-15 мин, давление кислорода 0,5-1,5 МПа. Содержание закиси железа в шлаке при продувке кислородом меньше, чем при продувке воздухом. Одновременно с началом продувки загружают первую порцию шлакообразующих (извести с бокситом или плавиковым шпатом) и иногда железной руды. Первая порция шлакообразующих должна составлять около 2/3 их общего количества. Оставшееся количество шлакообразующих вводят по ходу продувки в течение первой трети ее длительности. Сыпучие материалы загружают с помощью автоматизированной системы, состоящей из бункеров для хранения сыпучих, питателей, весов и лотков, по которым материалы ссыпаются в горловину конвертера. Система обеспечивает загрузку сыпучих без остановки продувки по программе, задаваемой оператором из пульта управления конвертером. По окончании плавки из полости конвертера выводят кислородную фурму, а конвертер поворачивают в вертикальное положение. Через его горловину отбирают пробу металла и шлака и замеряют температуру металла. В пробе металла экспрессным методом определяют содержание С, а иногда и Мn и других элементов. На основании результатов анализов принимают решение либо о выпуске плавки, либо о проведении корректирующих операций, которые должны обеспечить получение заданной температуры и заданного содержания углерода. Возможно проведение следующих операций по исправлению плавки: 1) при избыточном содержании углерода проводится додувка, продолжительность додувки рассчитывают заранее, используя результаты большого числа предыдущих плавок. 2) при высокой температуре в конвертер вводят охладители- легковесный лом, руду, известняк, известь, делая выдержку после их ввода в течение 3-4 мин. 3) при недостаточной температуре металла проводят додувку при повышенном положении фурмы или вводят ферромарганец или силикомарганец с последующей додувкой. 4) при недостаточном содержании углерода производят науглероживание металла присадками молотого кокса или графита на струю металла при его выпуске в ковш. После выполнения необходимых операций по исправлению плавки конвертер наклоняют и выпускают сталь в ковш через сталевыпускное отверстие, одновременно раскисляя её. В сталеразливочный ковш сливают также небольшое количество шлака. Шлаковый слой толщиной 200-300 мм предохраняет металл в ковше от быстрого охлаждения. Оставшийся шлак сливают через горловину в подаваемую под конвертер шлаковую чашу. До подачи в систему газоочистки газы охлаждают до температуры ниже 12000С. Применяют способы объемного и поверхностного охлаждения. Первый - за счет контакта газа с холодным воздухом или испарения воды без утилизации тепла. Второй – основан на контакте газа с поверхностью охлаждения типа кессона или котла–охладителя, или котла–утилизатора. Поверхностные охладители газов можно классифицировать по признакам: По виду теплоносителя – водяные (кессоны и трубчатые охладители) и паровые (котлы – утилизаторы). По виду теплообмена – радиационные и радиационно-конвективные. В первых охлаждение газов происходит до 800-12000С, во вторых – до 250-4000С. По схеме циркуляции теплоносителя – с принудительной, естественной или комбинированной схемой циркуляции. По виду газохода – с одним восходящим газоходом, с П – образным газоходом. В большинстве конструкций охладителей в качестве поверхности нагрева применяют трубы. В радиационной части трубы образуют сплошные мембранные трубчатые панели.
Вредные выбросы при конвертерном производстве стали. Процесс производства стали в конвертерах с продувкой ванны кислородом сверху связан с образованием большого количества конвертерных газов, которые содержат высокодисперсную конвертерную пыль и ядовитые газы (окись углерода, сернистый газ, окислы азота). Интенсивность выделения пыли определяется в основном составом шихтовых материалов, технологией плавки, гранулометрическим составом флюсующих добавок и организацией подачи кислорода. Конвертерные газы образуются в результате выгорания углерода шихты и разложения известняка. Количество выбросов вредных веществ из конвертера можно существенно уменьшить путем рационализации технологического процесса. Применение частичного дожигания существенно уменьшает выброс окислов азота. Вынос мелкой фракции флюсующих добавок можно сократить, применяя кусковую, хорошо обожженную известь. Весьма эффективным и перспективным средством сокращения выбросов пыли является повышение давления кислорода при входе в дутьевые сопла фурм до 20 и более атмосфер. Одним из перспективных направлений сокращения количества выбросов пыли и угара металла является повышение температуры металла в конвертере. Неорганизованные выбросы пыли можно улавливать аспирационной системой или использовать для этого газоотводящий тракт с установленной на нем газоочисткой. В этом случае вокруг конвертера устанавливают газонепроницаемые стенки и направляют неорганизованные выбросы в газоотводящий тракт, как это сделано на Новолипецком металлургическом заводе. Состав и количество отходящих газов зависят от способа отвода (с дожиганием или без дожигания) и конструкции охладителя газов. Способ отвода - с полным дожиганием или без дожигания – не сказывается на составе пыли. Плотность пыли 4,0 г/см3. Основная масса пыли перед газоочисткой при полном дожигании состоит из Fe2O3, а при частичном дожигании – из FeO. При любом способе отвода и охлаждения газов газоочистка должна обеспечить очистку, чтобы при выбросе газов в атмосферу концентрация пыли не превышала санитарную норму. Мокрая газоочистка. Основными аппаратами являются скрубберы – охладители, скрубберы Вентури и мокрые электрофильтры. Первой ступенью является скрубберный охладитель – полый цилиндр с бункером внизу и форсунками по высоте. В скрубберах Вентури в результате адиабатного расширения в конфузоре капли испаряются. Пар конденсируется на частицах пыли, ускоряя их коагуляцию. Высоконапорные скрубберы Вентури (8-15 кПа) имеют разнообразные решения. В системах с регулируемым отводом газов без дожигания трубы выполняются с регулируемым сечением горловины. В схемах мокрой газоочистки применяют в качестве второй ступени мокрые электрофильтры. Перед электрофильтром газ охлаждается в скруббере до температуры полного насыщения влагой 700С. Необходимость создания систем очистки сточных вод мокрых газоочисток и эксплуатационные затраты на очистку стимулируют создание надежных аппаратов сухой очистки. В последние годы применяют схемы отвода газов без дожигания, поскольку это снижает затраты на строительство цеха. На рис. 8 показана схема системы отвода и очистки газов без дожигания, примененная на ряде 150—300-т отечественных конвертеров.
Рис. 8 – Схема газоотводящего траката кислородного конвертера: 1 – конвертер; 2 – подвижная “юбка”; 3 – подвижная часть ОКГ; 4 – стационарная часть ОКГ; 5 – орошаемый газоход; 6 – трубы Вентури; 7 – каплеуловитель; 8 – нагнетатель; 9 – свеча; 10 – дожигающее устройство.
Над горловиной конвертера расположена подвижная "юбка". В опущенном положении юбка обеспечивает герметичность соединения горловины с ОКГ; при необходимости поворота конвертера юбку поднимают. Через юбку отходящие газы поступают в ОКГ, состоящий из стационарного газохода и подвижного кессона, который вместе с юбкой откатывают в случае необходимости обеспечить доступ в конвертер сверху. В ОКГ газы охлаждаются до 900-1000 °С и затем поступают в орошаемый газоход, где их температуру понижают до 300 °С водой, подаваемой через форсунки. Затем газы попадают в первую ступень газоочистки, выполненную в виде двух параллельно расположенных труб Вентури с прямоугольным регулируемым сечением горловины, и далее во вторую ступень, состоящую из одной трубы Вентури с прямоугольным регулируемым сечением. В трубах Вентури частицы пыли сливаются с каплями подаваемой в трубы воды. Затем поток газов поступает в каплеуловитель, где капли, содержащие частицы пыли, отделяются от газа. Далее очищенные газы выбрасываются дымососом в атмосферу через свечу с дожигающим устройством, обеспечивающим дожигание СО до СО2. Это необходимо, чтобы в атмосферу не попадал ядовитый газ СО; вместе с тем при сжигании СО образуется некоторое количество вредных оксидов азота, попадание которых в атмосферу также считается недопустимым. Отделяемая от газов смоченная водой пыль в виде шлама удаляется из нижней части каплеуловителя и из бункеров под трубами Вентури. Далее шлам обезвоживают, после чего воду вновь направляют в систему газоочистки, а сухой шлам используют, добавляя в шихту агломерации. Сухая очистка. В этих схемах используют сухие электрофильтры и тканевые рукавные фильтры. Взрывобезопасность системы обусловлена рядом особенностей электрофильтра. Пыль удаляется конвейером периодически. Снаружи фильтр покрыт теплоизоляцией. Корпус рассчитан на взрывы газовой смеси с увеличением давления. Для очистки газов применяют тканевые рукавные фильтры. В одном из фильтров материал ткани «тергаль» обеспечивает запыленность до 20 мг/м3 при температуре 1450С. Тканевый фильтр состоит из корпуса цилиндрической или прямоугольной формы, выполненного из листовой стали, в котором размещены все узлы фильтра. Существенным элементом корпуса является бункер, имеющий коническую или пирамидальную форму, угол наклона стенок которого должен быть больше угла естественного откоса улавливаемой ныли. В нижней части бункера устанавливаются шнековый или скребковый транспортер и шлюзопыли. Бункер и корпус разделены горизонтальной решеткой, в которой сделаны отверстия с патрубками для крепления рукавов. Корпус вертикальными стенками разделяется на секции с целью уменьшения перегрузки фильтровального материала и более эффективной регенерации. В секциях прямыми рядами или в шахматном порядке размещаются рукава: отношение длины рукава к диаметру - от 15 до 40. На корпусе находятся: механизм управления регенерацией; клапанная коробка переключения секций на продувку с калорифером, для подачи в фильтр подогретого продувочного воздуха; а также коллекторы, через которые запыленный газ и продувочный воздух подводятся к фильтру, а очищенный воздух отводится от него. В тканевых фильтрах применяют фильтрующие материалы двух типов: обычные ткани, изготавливаемые на ткацких станках и войлоки (фетры), получаемые путем свойлачивания или механического перепутывания волокон иглопробивным методом.
|
||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 2000; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.118.151.211 (0.013 с.) |