Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Размах вариации, квартильное отклонение, среднее линейное и квадратическое отклонения – величины именованные, имеют размерность осредняемого признака. Дисперсия единицы измерения не имеет.Содержание книги
Похожие статьи вашей тематики
Поиск на нашем сайте
Для целей сравнения колеблемости различных признаков в одной и той же совокупности или же при сравнении колеблемости одного и того же признака в нескольких совокупностях вычисляются относительные показатели вариации. Базой для сравнения служит средняя арифметическая. Чаще всего относительные показатели выражаются в процентах и характеризуют не только сравнительную оценку вариации, но и дают характеристику однородности совокупности. Коэффициент осцилляции (относительный размах вариации) рассчитывается по формуле: , Линейный коэффициент вариации (относительное линейное отклонение): , Относительный показатель квартильной вариации: или Коэффициент вариации: , Наиболее часто применяемый в статистике показатель относительной колеблемости – коэффициент вариации. Его используют не только для сравнительной оценки вариации, но и как характеристику однородности совокупности. Чем больше величина коэффициента вариации, тем больше разброс значений признака вокруг средней, тем больше неоднородность совокупности. Существует шкала определения степени однородности совокупности в зависимости от значений коэффициента вариации (17; С.61).
Для получения приблизительного представления о форме распределения строят графики распределения (полигон и гистограмму). В практике статистического исследования приходится встречаться с самыми различными распределениями. При изучении однородных совокупностей имеем дело, как правило, с одновершинными распределениями. Многовершинность свидетельствует о неоднородности изучаемой совокупности, появление двух и более вершин говорит о необходимости перегруппировки данных с целью выделения более однородных групп. Выяснение общего характера распределения предполагает оценку степени его однородности, а также вычисление показателей асимметрии и эксцесса. Симметричным является распределение, в котором частоты любых двух вариантов, равноотстоящих в обе стороны от центра распределения, равны между собой. Для симметричных распределений средняя арифметическая, мода и медиана равны между собой. В связи с этим простейший показатель асимметрии основан на соотношении показателей центра распределения: чем больше разница между средними , тем больше асимметрия ряда. Для характеристики асимметричности в центральной части распределения, то есть основной массы единиц или для сравнительного анализа степени асимметрии нескольких распределений рассчитывают относительный показатель асимметрии К.Пирсона: . Величина показателя As может быть положительной и отрицательной. Положительная величина показателя указывает на наличие правосторонней асимметрии (правая ветвь относительно максимальной ординаты вытянута больше, чем левая). При правосторонней асимметрии между показателями центра распределения существует соотношение: . Отрицательный знак показателя асимметрии свидетельствует о наличии левосторонней асимметрии (рис. 1). Между показателями центра распределения в этом случае имеется соотношение: . Рис. 1. Распределение: 1 – с левосторонней асимметрией; 2 – с правосторонней асимметрией.
Другой показатель, предложенный шведским математиком Линдбергом, рассчитывают по формуле: , где П – процент тех значений признака, которые превосходят по величине среднюю арифметическую. Наиболее точным и распространенным является показатель, основанный на определении центрального момента третьего порядка (в симметричном распределении его величина равна нулю): , где - центральный момент третьего порядка: - для несгруппированных данных; - для сгруппированных данных. σ – среднеквадратическое отклонение. Применение этого показателя дает возможность не только определить величину асимметрии, но и ответить на вопрос о наличии или отсутствии асимметрии в распределении признака в генеральной совокупности. Оценка степени существенности этого показателя дается с помощью средней квадратической ошибки, которая зависит от объема наблюдений n и рассчитывается по формуле: . Если отношение , асимметрия существенна, и распределение признака в генеральной совокупности не является симметричным. Если отношение , асимметрия несущественна, ее наличие может быть объяснено влиянием различных случайных обстоятельств. Для симметричных распределений рассчитывается показатель эксцесса (островершинности). Линдбергом предложен следующий показатель для оценки эксцесса: , где П – доля (%) количества вариантов, лежащих в интервале, равном половине среднего квадратического отклонения в ту или другую сторону от средней арифметической. Наиболее точным является показатель, использующий центральный момент четвертого порядка: , где - центральный момент четвертого момента; - для несгруппированных данных; - для сгруппированных данных.
На рисунке 2 представлены два распределения: одно – островершинное (величина эксцесса положительная), второе – плосковершинное (величина эксцесса отрицательная). Эксцесс представляет собой выпад вершины эмпирического распределения вверх или вниз от вершины кривой нормального распределения. В нормальном распределении отношение .
Рис. 2. Распределение: 1,4 – нормальное; 2 – островершинное; 3 – плосковершинное
Средняя квадратическая ошибка эксцесса рассчитывается по формуле: , где n – число наблюдений. Если , то эксцесс существенен, если , то несущественен. Оценка существенности показателей асимметрии и эксцесса позволяет сделать вывод о том, можно ли отнести данное эмпирическое исследование к типу кривых нормального распределения.
2. Рассмотрим методику исчисления показателей вариации.
Пример 1. Таблица 1
|
||||||||||
Последнее изменение этой страницы: 2016-08-12; просмотров: 600; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.135.202.38 (0.009 с.) |