Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Условный экстремум. Необходимый и достаточный признаки существования.↑ ⇐ ПредыдущаяСтр 5 из 5 Содержание книги
Поиск на нашем сайте
Опр Точка – точка лок усл экстремума ф-ии при условии , если сущ точки , такая, что для выполнено хотя бы 1 из след нер-в: 1) – строгий усл мин 2) - усл мин 3) - строгий усл мах 4) - усл мах Т. (необх пр-к сущ-ния) Для того, чтобы точка была т. усл экстр ф-ии при ур-ниях связи необх чтобы её коoрд при некот знач удовл сис-ме уравнений: Т. (дост пр-к сущ-ния) Пусть ф-ии и имеют непрер частн произв 2го порядка в окр-сти точки стационарной для ф-ии Лагранжа при и в этой точке Якобиан (опред м-цы Якоби) отличен от 0, тогда наличие усл экстр для ф-ии определяется положит(для мин) или отриц(для мах) определённостью 2го диф-ла ф-ии Лагранжа при
Основные понятия числовых рядов. Опр. Числ. ряд – посл-ть конечных сумм спец вида постр по к-либо числ посл-ти Осн.понятия: 1)общий член 2)частичная сумма 3)остаток 4)отрезок 5)знакопост 6)знакоположит/знакоотриц 7)знакопеременный
Простейшие операции над рядами. Т. (об умножении членов ряда на число).Если ряд ∑ak сх и λ-число, то ряд ∑λak сх и след рав-во ∑λak=λ∑ak. Т. (о почленном сложении рядов). Если ряды ∑ak и ∑bk сх, то ряд ∑(ak+bk) также сх и справедливо рав-во: ∑(ak+bk)= ∑ak+∑bk. Т. (о группировке членов ряда).Пусть a1+a2+…-4P(числ ряд) и 1 n1 n2… возр посл-ть.Пусть далее образ нов ряд b1+b2+…, где b1=a1+…+an, b2=an1+1+…+an2,…Тогда, если исод ряд ∑ak сход, то нов ряд ∑bj тож сх-ся и их суммы равны. Т. Любая перестановка конечного числа членов ряда не нарушает его свойств сходимости и не нарушает его сумму.
Критерий Коши и другие критерии сходимости для числовых рядов Т. , т.е любой отрезок ряда может быть сделан сколь угодно малым, начиная с некоторого номера. Т. (критерий сх-ти ряда в терминах остатов)Сх-ть ряда ∑ak равносильна сх-ти любого его остатка. В случае сх-ти ряда посл-ть (rn) суммы остатков стремится к 0. Т. (критерий сх-ти ряда с неотриц членами)Сх-ть числ ряда с неотриц членами равнос ограниченности сверху посл-ти его частных сумм. Признаки сравнения для знакоположительных рядов. Т. (Мажорантный признак сравнения). Пусть ∑ak и ∑bk ряды с неотриц членами и ak=O(bk) при k→∞, тогда: 1)Если ряд ∑bk сх-ся, то ряд ∑ak также сх-ся; 2) Если ряд ∑ak расх-ся, то ряд ∑bk также расх-ся. Т. (признак сравнения в предельной форме).Пусть ∑bk и ∑ak-знакополож ряды и существует lim ak/bk=Lє[0;+∞), тогда: 1)При 0<L<+∞ ряды ∑bk и ∑ak оба сх-ся или расх; 2)При L=0 из сх ниж ряда из ∑bk вытекает сх-ть ряда ∑ak; 3)При L=+∞ из расход-ти верхнего ряда ∑ak вытекает расх-ть нижнего ряда ∑bk. Т. (признак сравнения отношения).Пусть сумма ∑ak и ∑bk-знакоположит ряды и для всех вы прав-во: , тогда: 1)∑bk сх, тогда ∑ak сх; 2)∑ak расх, тогда ∑bk расх.
67. Интегральный признак сходимости для знакоположительных рядов. Следствия. Т. (Интеграл призн Маклорена-Коши).Пусть f:[1;+∞)→R-положит убывающ ф-ия, тогда сходимость числового ряда ∑f(x) равносильна существованию конечного lim f(x) первообразной F(x) для ф-ии f(x). Сл. Для гармонического ряда ∑ имеем f(x)= . Её первообразная F(x)=ln x→+∞, тогда ряд ∑ расх-ся.Из отношения Sn-f(1) Sn-1 при f(x)= вытекает приближ знач для частных сумм гармонического ряда ∑ : Более точная ф-ла: , →0, c=lim() наз постоянной Эйлера(с=0,577…) 68. Признаки Коши и Даламбера Т. (Пр-к Коши(с корнем)). Пусть ∑ak-ряд с неотриц членами, для кот =q, тогда: 1)при q<1 ряд сх-ся; 2)при q>1 ряд расх-ся; 3)при q=1 необх дополн исслед ряда. Т. (Пр-к Даламбера).Пусть для знакаположительного ряда ∑ak сущ-ет lim =D, тогда: 1)при D<1 ряд сх-ся; 2)при D>1 ряд расх-ся; 3)при D=1 необх дополн исслед ряда.
Признаки Куммера и Раабе. Т. (Пр-к Куммера).Пусть ∑an- знакаположительный ряд и -некотор посл-ть положит чисел, пусть далее Kn=Cn -Cn+1,n=1,2,… перемен Куммера для ряда ∑an постр по данной посл-ти (Cn), тогда: 1)Если такое δ>0, что начиная с некоторого номера Kn δ, то ряд ∑an сх-ся; 2)если начиная с некоторого номера 0 и при этом ∑ расх-ся, то ряд ∑an также расх-ся. Т. (Пр-к Раабе).Пусть сущ-ет конечный или предел R=lim n( -1), тогда: 1)при R>1 ряд сх-ся; 2)при R<1 ряд расх-ся; 3)при R=1 необх дополн исслед ряда.
Признаки Бертрана и Гаусса. Т. (Пр-к Бертрана).Пусть для знакоположительного ряда ∑an сущ-ет конечный или предел B=lim Bn, Bn=(Rn-1)ln n, где Rn –переменная Раабе, тогда: 1)при B>1 ряд сх-ся; 2)при B<1 ряд расх-ся; 3)при B=1 необх дополн исслед ряда. Т.(Пр-к Гаусса). Пусть ∑an- знакаположительный ряд, пусть сущ-ют λ и μ такие, что отношение можно представить в виде: =λ+ +O() при n→+∞, тогда ряд ∑an: 1)сх-ся, λ>1 или ; 2)расх-ся, λ<1 или ; 3)сомнительных случаев нет.
|
||||
Последнее изменение этой страницы: 2016-08-06; просмотров: 202; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.225.254.81 (0.008 с.) |