Кровь. Понятие, физиологические функции. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Кровь. Понятие, физиологические функции.



Кровь. Понятие, физиологические функции.

Кровь - жидкая внутренняя среда организма. Общий объём крови взрослого человека составляет 5-6 л. Кровь состоит из жидкой части - плазмы, составляющей 55% её общего объёма, и форменных элементов, к которым относят эритроциты, лейкоциты и тромбоциты.

Функции:

· Она переносит кислород из лёгких к тканям и углекислый газ из тканей в лёгкие в составе гемоглобина эритроцитов (дыхательная функция);

· доставляет продукты переваривания пищи из кишечника в ткани (трофическая функция);

· уносит конечные продукты обмена из тканей в выделительные органы (выделительная функция);

· участвует в регуляции обмена веществ, доставляя сигнальные молекулы от органов внутренней секреции к тканям-мишеням

· Защитная функция крови имеет две стороны: в ней содержатся клеточные (лейкоциты) и гуморальные (антитела) элементы иммунного реагирования, которые защищают организм от любой чужеродной молекулы. Во-вторых, это способность крови свёртываться.

· поддерживает кислотно-щелочной и водный баланс организма, осмотрическое и онкотическое давление. В норме рН крови составляет 7,36-7,4. Регуляцию рН осуществляют буферные системы крови.

· Выполняя терморегуляторную функцию, кровь поддерживает постоянство температуры тела в разных его частях.

РН 7,36-7,42

Росм 7,9-8,1 атм

Ронк 0,03-0,04 атм

Плотность 1,05-1,06 г/см3

 

Химический состав крови. Минеральные и органические вещест ва

Химический состав растворимых в плазме крови веществ относительно постоянен, так как существуют мощные нервные и гуморальные механизмы, поддерживающие гомеостаз (постоянство внутренней среды). Растворимые вещества плазмы составляют около 10% массы крови, из них на долю белков приходится около 7%, на долю неорганических солей - 0,9%, остальную часть образуют небелковые органические соединения. Распределение электролитов в жидких средах организма очень специфично по своему количественному и качественному составу. Из катионов плазмы натрий составляет 93% от всего их количества. Среди анионов следует выделить прежде всего хлор и бикарбонат. Сумма анионов и катионов практически одинакова, т.е. вся система электронейтральна.

Плазма крови — жидкая часть крови, которая содержит воду и взвешенные в ней вещества — белки и другие соединения.

1. Основными белками плазмы являются альбумины, глобулины и фибриноген. Около 85 % плазмы составляет вода.

2. Неорганические вещества составляют около 2-3 %; это катионы (Na+, K+, Mg2+, Ca2+) и анионы (HCO3-, Cl-, PO43-, SO42-).

3. Органические вещества (около 9 %) в составе крови подразделяются на

a. азотсодержащие: белковые 65-85 г/л и небелковые 15-25 г/л (белки, аминокислоты, мочевина, креатинин, аммиак, продукты обмена пуриновых и пиримидиновых нуклеотидов)

b. безазотистые: УВ 4,3-6,2 г/л и липиды 6,0-8,0 г/л (глюкоза, жирные кислоты, пируват, лактат, фосфолипиды, триацилглицеролы, холестерин).

Также в плазме крови содержатся газы (кислород, углекислый газ) и биологически активные вещества (гормоны, витамины, ферменты, медиаторы).

В цельной крови железо содержится в основном в эритроцитах (около 18,5 ммоль/л), в плазме концентрация его составляет в среднем 0,02 ммоль/л. Ежедневно в процессе распада гемоглобина эритроцитов в селезенке и печени освобождается около 25 мг железа и столько же потребляется при синтезе гемоглобина в клетках кроветворных тканей.

 

Гемоглобин, строение, свойства, биологическая роль

Гемоглобин взрослого организма является тетрамером, состоящим из двух α- и двух β-субьединиц с молекулярными массами примерно 16 кДа. α- и β-цепи отличаются аминокислотной последовательностью, но имеют сходную конформацию. Каждая субъединица несет группу гема с ионом двухвалентного железа в центре. Содержание Hb в крови составляет 140-180 г/л у мужчин и 120-160 г/л у женщин, т. е. вдвое выше по сравнению с белками плазмы (50-80 г/л). Поэтому Hb вносит наибольший вклад в образование рН-буферной емкости крови.

Гемоглобин в качестве белкового компонента содержит глобин, а небелкового – гем. Видовые различия гемоглобина обусловлены глобином, в то время как гем одинаков у всех видов гемоглобина. Основу структуры простетической группы большинства гемосодержащих белков составляет порфириновое кольцо, являющееся в свою очередь производным тетрапиррольного соединения – порфирина.

Атом железа расположен в центре гема-пигмента, придающего крови характерный красный цвет. Каждая из 4 молекул гема «обернута» одной полипептидной цепью. В молекуле гемоглобина взрослого человека HbА содержатся четыре полипептидные цепи, которые вместе составляют белковую часть молекулы – глобин. Две из них, называемые α-цепями, имеют одинаковую первичную структуру и по 141 аминокислотному остатку. Две другие, обозначаемые β-цепями, также идентично построены и содержат по 146 аминокислотных остатков. Таким образом, вся молекула белковой части гемоглобина состоит из 574 аминокислот. Во многих положениях α- и β-цепи содержат разные аминокислотные последовательности, хотя и имеют почти одинаковые пространственные структуры. Получены доказательства, что в структуре гемоглобинов более 20 видов животных 9 аминокислот в последовательности оказались одинаковыми, консервативными (инвариантными), определяющими функции гемоглобинов; некоторые из них находятся вблизи гема, в составе участка связывания с кислородом, другие – в составе неполярной внутренней структуры глобулы.

 

 

Hb= α2β2

2α цепи и 2β цепи-96%

4 гема-4%

Особенности строения, развития и метаболизма эритроцита.

Эритроциты - высокоспециализированные клетки, которые переносят кислород от лёгких к тканям и диоксид углерода, образующийся при метаболизме, из тканей к альвеолам лёгких. Транспорт О2 и СО2 в этих клетках осуществляет гемоглобин, составляющий 95% их сухого остатка.

Метаболизм

Метаболизм глюкозы

Эритроциты лишены митохондрий, поэтому в качестве энергетического материала они могут использовать только глюкозу. Глюкоза поступает в эритроциты путём облегчённой диффузии с помощью ГЛЮТ-2. Около 90% поступающей глюкозы используется в анаэробном гликолизе, а остальные 10% - в пентозофосфатном пути.

 

Важная особенность анаэробного гликолиза в эритроцитах по сравнению с другими клетками - присутствие в них фермента бисфосфоглицератмутазы. Бисфосфоглицератмутаза катализирует образование 2,3-бисфосфоглицерата(служит важным аллостерическим регулятором связывания кислорода гемоглобином) из 1,3-бисфосфоглицерата..

Глюкоза в эритроцитах используется и в пентозофосфатном пути, окислительный этап которого обеспечивает образование кофермента NADPH, необходимого для восстановления глутатиона.

Обезвреживание кислорода

Большое содержание кислорода в эритроцитах определяет высокую скорость образования супероксидного анион-радикала (О2-), пероксида водорода (Н2О2) и гидроксил радикала (ОН.). Эритроциты содержат ферментативную систему, предотвращающую токсическое действие активных форм кислорода и разрушение мембран эритроцитов. Постоянный источник активных форм кислорода в эритроцитах - неферментативное окисление гемоглобина в метгемоглобин:

 

Метгемоглобинредуктазная сисгема состоит из цитохрома B5 и флавопротеина цитохром B5 редуктазы, донором водорода для которой служит NADH, образующийся в глицеральдегиддегидрогеназной реакции гликолиза

Цитохром B5 восстанавливает Fe3+ метгемог-лобина в Fe2+:

 

Hb-Fe3+ + цит. b5 восст. → HbFe2+ + цит. b5 ок..

 

Окисленный цитохром B5 далее восстанавливается цитохром B5 редуктазой:

 

Цит. B5 ок + NADH → цит. B5 восст. + NAD+.

 

Супероксидный анион с помощью фермента супероксидцисмутазы превращается в пероксид водорода:

 

O2- + O2- + Н+ → H2О2 + O2.

Пероксид водорода разрушается каталазой и содержащим селен ферментом глутатионпероксидазой. Донором водорода в этой реакции служит глутатион - трипептид глутамилцистеинилглицин (GSH) (см. раздел 12).

 

2Н2О → 2Н2О + О2; 2GSH + 2Н2О2 → GSSG + 2Н2О.

 

Окисленный глутатион (GSSG) восстанавливается NADPH-зависимой глутатионредуктазой. Восстановление NADP для этой реакции обеспечивают окислительные реакции пентозофосфатного пути (см. раздел 7).

 

Варианты первичной структуры и свойств гемоглобина,гемоглабинопатии.

 

Hb взрослого организма состоит, как упомянуто выше, из двух α- и двух β-цепей (α2β2). Наряду с этой основной формой (HbA1) в крови присутствуют незначительные количества второй формы с более высоким сродством к O2, у второй β-цепи заменены δ-цепя-ми (HbA2, α2δ2). Две другие формы Hb встречаются только в эмбриональном периоде развития. В первые три месяца образуются эмбриональные гемоглобины состава α2ε2-P и α2γ2-F. Затем вплоть до рождения доминирует фетальный гемоглобин (HbF), который постепенно заменяется на первом месяце жизни на HbА. Эмбриональный и фетальный гемоглобины обладают более высоким сродством к О2 по сравнению с HbА, так как они должны переносить кислород из системы материнского кровообращения.

 

Классическим примером наследственной гемоглобинопатии является серповидно-клеточная анемия. При этой патологии эритроциты в условиях низкого парциального давления кислорода принимают форму серпа. Гемоглобин S после отдачи кислорода в тканях он превращается в плохо растворимую дез-окси-форму и начинает выпадать в осадок в виде веретенообразных кристаллоидов, названных тактоидами. Последние деформируют клетку и приводят к массивному гемолизу. Болезнь протекает остро, и дети, гомозиготные по мутантному гену, часто умирают в раннем возрасте. Химический дефект при серповидно-клеточной анемии был раскрыт В. Ингремом и сводится к замене единственной аминокислоты, а именно глутаминовой, в 6-м положении с N-конца на валин в β-цепях молекулы гемоглобина HbS. Это результат мутации в молекуле ДНК, кодирующей синтез β-цепи гемоглобина.

 

 

Вопрос № 6

Вопрос № 7

Транспорт кровью кислорода и двуокиси углерода(схема)

Вопрос № 8

Вопрос № 9

Вопрос № 10

Схема распада гемоглобина. "Непрямой" билирубин.

Катаболизм гема

Первая реакция катаболизма гема происходит при участии NADPH-зависимого ферментативного

комплекса гемоксигеназы. Ферментная сисгема локализована в мембране ЭР, в области электронтранспортных цепей микросомального окисления. Фермент катализирует расщепление связи между двумя пиррольными кольцами, содержащих винильные остатки, - таким образом, раскрывается структура кольца (рис. 13-11). В ходе реакции образуются линейный тетрапир-рол - биливердин (пигмент жёлтого цвета) и монооксид углерода (СО), который получается из углерода метениловой группы. Гем индуцирует транскрипцию гена гемоксигеназы, абсолютно специфичной по отношению к тему.

Ионы железа, освободившиеся при распаде гема, могут быть использованы для синтеза новых молекул гемоглобина или для синтеза других железосодержащих белков. Биливердин восстанавливается до билирубина NADPH-зависимым ферментом биливердинредуктазой. Билирубин образуется не только при распаде гемоглобина, не также при катаболизме других гемсодержащю белков, таких как цитохромы и миоглобин. При распаде 1 г гемоглобина образуется 35 мг билирубина, а в сутки у взрослого человека - примерно 250-350 мг билирубина. Дальнейший метаболизм билирубина происходит в печени

Рис. 13-13. Образование билирубиндиглюкуронида.

присутствие небольшого количества моноглюкуронида. Транспорт конъюгирован-ного билирубина из печени в жёлчь активируется теми же лекарствами, которые способны индуцировать конъюгацию билирубина. Таким образом, можно сказать, что скорость конъюгации билирубина и активный транспорт билирубинглюкуронида из гепатоцитов в жёлчь строго взаимосвязаны

Желтуха новорождённых

Частая разновидность гемолитической желтухи новорождённых - "физиологическая желтуха", наблюдающаяся в первые дни жизни ребёнка. Причиной повышения концентрации непрямого билирубина в крови служит ускоренный гемолиз и недостаточность функции белков и ферментов печени, ответственных за поглощение, конъюгацию и секрецию прямого билирубина. У новорождённых не только снижена активность УДФ-глюкуронилтрансферазы, но и, по-видимому, недостаточно активно происходит синтез второго субстрата реакции конъюгации УДФ-глюкуроната

Известно, что УДФ-глюкуронилтрансфераза - индуцируемый фермент (см. раздел 12). Новорождённым с физиологической желтухой вводят лекарственный препарат фенобарбитал, индуцирующее действие которого было описано в разделе 12.Одно из неприятных осложнений "физиологической желтухи" - билирубиновая энцефалопатия. Когда концентрация неконъюгированного билирубина превышает 340 мкмоль/л, он проходит через гематоэнцефалический барьер головного мозга и вызывает его поражение.

2. Печёночно-клеточная (печёночная) желтуха

Печёночно-клеточная (печёночная) желтуха обусловлена повреждением гепатоцитов и жёлчных капилляров, например, при острых вирусных инфекциях, хроническом и токсических гепатитах.Причина повышения концентрации билирубина в крови - поражение и некроз части печёночных клеток. Происходит задержка билирубина в печени, чему способствует резкое ослабление метаболических процессов в поражённых гепатоцитах, которые теряют способность нормально выполнять различные биохимические и физиологические процессы, в частности переводить конъюгированный (прямой) билирубин из клеток в жёлчь против градиента концентрации. Для печёночно-клеточной желтухи характерно то, что вместо преобладающих в норме диглюкуронидов билирубина в поражённой печёночной клетке образуются

14. Диагностическое значение определения концентрации билирубина в биологических жидкостях человека при различных типах желтух

В настоящее время для определения содержания билирубина в сыворотке (плазме) крови используют предложенный в 1916 г. Ван дер Бергом метод определения билирубина в сыворотке крови, основанный на диазореакции.

В нормальном состоянии концентрация общего билирубина в плазме составляет 0,3-1 мг/дл (1,7-17 мкмоль/л), 75% от общего количества билирубина находится в неконъюгированной форме (непрямой билирубин). В клинике конъ-югированный билирубин называют прямым, потому что он водорастворим и может быстро взаимодействовать с диазореагентом, образуя соединение розового цвета, - это и есть прямая реакция Ван дер Берга. Неконъюгированный билирубин гидрофобен, поэтому в плазме крови содержится в комплексе с альбумином и не реагирует с диазореактивом до тех пор, пока не добавлен органический растворитель, например этанол, который осаждает альбумин. Неконъюгированный илирубин, взаимодействующий с азокрасителем только после осаждения белка, называют непрямым билирубином.

Когда содержание билирубина превышает норму, говорят о гипербилирубинемии. В зависимости от того, концентрация какого типа билирубина повышена в плазме - неконъюгированного или конъюгированного, - гипербилирубинемию классифицируют как неконъюгированную и конъюгированную.

У больных с печёночно-клеточной патологией, сопровождающейся длительным повышением концентрации конъюгированного билирубина, в крови обнаруживают третью форму плазменного билирубина, при котором билирубин ковалентно связан с альбумином, и поэтому его невозможно отделить обычным способом. В некоторых случаях до 90% общего содержания билирубина крови может находиться в этой форме.

При диагностике желтух надо иметь в виду, что на практике редко отмечают желтуху какого-либо одного типа в "чистом" виде. Чаще встречается сочетание того или иного типа. Так, при выраженной гемолитической желтухе, сопровождающейся повышением концентрации непрямого билирубина, неизбежно страдают различные органы, в том числе и печень, что может вносить элементы паренхиматозной желтухи, т.е. повышение в крови и моче прямого билирубина. В свою очередь, паренхиматозная желтуха, как правило, включает в себя элементы механической. При подпечёночной (механической) желтухе, например при раке головки поджелудочной железы, неизбежен повышенный гемолиз как следствие раковой интоксикации и, как следствие, повышение в крови как прямого, так и непрямого билирубина.

Итак, гипербилирубинемия может быть следствием избытка как связанного, так и свободного билирубина. Измерение их концентрацийпо отдельности необходимо при постановке диагноза желтухи. Если концентрация билирубина в плазме <100 мкмоль/л и другие тесты функции печени дают нормальные результаты, возможно предположить, что повышение обусловлено за счёт непрямого билирубина. Чтобы подтвердить это, можно сделать анализ мочи, поскольку при повышении концентрации непрямого билирубина в плазме прямой билирубин в моче отсутствует.

При дифференциальной диагностике желтух необходимо учитывать содержание уробилиногенов в моче. В норме за сутки из организма выделяется в составе мочи около 4 мг уробилиногенов. Если с мочой выделяется повышенное количество уробилиногенов, то это - свидетельство недостаточности функции печени, например при печёночной или гемолитической желтухе. Присутствие в моче не только уробилиногенов, но и прямого билирубина указывает на поражение печени и нарушение поступления жёлчи в кишечник.

15. Белки сыворотки крови. Общее содержание, функции. Отклонение в содержании общего белка сыворотки крови, причины

В плазме крови содержится 7% всех белков организма при концентрации 60 - 80 г/л. Белки плазмы крови выполняют множество функций. Одна из них заключается в поддержании осмотического давления, так как белки связывают воду и удерживают её в кровеносном русле.

Группа Белки К-ция в сыв-ке, г/л Функция
Альбумины Транстиретин 0,25 Транспорт тироксина и трийодтиронина
  Альбумин   Поддержание осмотического давления, транспорт жирных кислот, билирубина, жёлчных кислот, стероидных гормонов, лекарств, неорганических ионов, резерв аминокислот
α1-Глобулины α1 -Антитрипсин 2,5 Ингибитор протеиназ
  ЛПВП 0,35 Транспорт холестерола
  Протромбин 0,1 Фактор II свёртывания крови
  Транскортин 0,03 Транспорт кортизола, кортикостерона, прогестерона
  Кислый α1-гликопротеин   Транспорт прогестерона
  Тироксинсвязывающий глобулин 0,02 Транспорт тироксина и трийодтиронина
α2-Глобулины Церулоплазмин 0,35 Транспорт ионов меди, оксидоредуктаза
  Антитромбин III 0,3 Ингибитор плазменных протеаз
  Гаптоглобин   Связывание гемоглобина
  α2-Макроглобулин 2,6 Ингибитор плазменных протеиназ, транспорт цинка
  Ретинолсвязыва-ющий белок 0,04 Транспорт ретинола
  Витамин D связывающий белок 0,4 Транспорт кальциферола
β-Глобулины ЛПНП 3,5 Транспорт холестерола
  Трансферрин   Транспорт ионов железа
  Фибриноген   Фактор I свёртывания крови
  Транскобаламин 25Ч10-9 Транспорт витамина B12
  Глобулин связывающий белок 20Ч10-6 Транспорт тестостерона и эстрадиола
  С-реактивный белок <0,01 Активация комплемента
γ-Глобулины IgG   Поздние антитела
  IgA 3,5 Антитела, защищающие слизистые оболочки
  IgM 1,3 Ранние антитела
  IgD 0,03 Рецепторы В-лимфоцитов
  IgE <0,01 Реагин
  • Белки плазмы образуют важнейшую буферную систему крови и поддерживают рН крови в пределах 7,37 - 7,43.
  • Альбумин, транстиретин, транскортин, трансферрин и некоторые другие белки (табл. 14-2) вьшолняют транспортную функцию.
  • Белки плазмы определяют вязкость крови и, следовательно, играют важную роль в гемодинамике кровеносной системы.
  • Белки плазмы крови являются резервом аминокислот для организма.
  • Иммуноглобулины, белки свёртывающей системы крови, α1-антитрипсин и белки системы комплемента осуществляют защитную функцию.

Методом электрофореза на ацетилцеллюлозе или геле агарозы белки плазмы крови можно разделить на альбумины (55-65%), α1-глобулины (2- 4%), α2 -глобулины (6-12%), β-глобулины (8-12%) и γ-глобулины (12-22%) (рис. 14-19).

Применение других сред для электрофоретического разделения белков позволяет обнаружить большее количество фракций. Например, при электрофорезе в полиакриламидном или крахмальном гелях в плазме крови выделяют 16-17 белковых фракций. Метод иммуноэлектрофореза, сочетающий электрофоретический и иммунологический способы анализа, позволяет разделить белки плазмы крови более чем на 30 фракций.

Большинство сывороточных белков синтезируется в печени, однако некоторые образуются и в других тканях. Например, γ-глобулины синтезируются В-лимфоцитами (см. раздел 4), пептидные гормоны в основном секретируют клетки эндокринных желёз, а пептидный гормон эритропоэтин - клетки почки.

Для многих белков плазмы, например альбумина, α1-антитрипсина, гаптоглобина, транс-феррина, церулоплазмина, α2-макроглобулина и иммуноглобулинов, характерен полиморфизм (см. раздел 4).

Почти все белки плазмы, за исключением альбумина, являются гликопротеинами. Олигосахариды присоединяются к белкам, образуя гликозидные связи с гидроксильной группой серина или треонина, или взаимодействуя с карбоксильной группой аспарагина. Концевой остаток олигосахаридов в большинстве случаев представляет собой N-ацетилнейраминовую кислоту, соединённую с галактозой. Фермент эндотелия сосудов нейраминидаза гидролизует связь между ними, и галактоза становится доступной для специфических рецепторов гепатоцитов. Путём эвддцитоза "состарившиеся" белки поступают в клетки печени, где разрушаются. Т1/2 белков плазмы крови составляет от нескольких часов до нескольких недель.

При ряде заболеваний происходит изменение соотношения распределения белковых фракций при электрофорезе по сравнению с нормой.

Под термином «общий белок сыворотки крови» или «общий белок крови» понимается большое количество белков, присутствующих в сыворотке крови и различающихся между собой по структуре, физико-химическим свойствам, функции. Все белки сыворотки крови делят на альбумин и глобулины. В плазме крови помимо альбумина и глобулинов содержится также фибриноген, поэтому содержание общего белка в плазме крови несколько выше, чем в сыворотке.

Гиперпротеинемия

Увеличение общего белка в сыворотке крови может быть относительным и абсолютным.

Относительная гиперпротеинемия связана с уменьшением содержания воды в сосудистом русле, к чему могут приводить следующие состояния:

· тяжелые ожоги;

· генерализованный перитонит;

· непроходимость кишечника;

· неукротимая рвота;

· профузный понос;

· несахарный диабет;

· хронический нефрит;

· усиленное потоотделение;

· диабетический кетоацидоз.

Абсолютная гиперпротеинемия встречается редко. При этом увеличение общего белка в сыворотке крови может быть связано с синтезом патологических белков (парапротеинов), повышением синтеза иммуноглобулинов или усиленном синтезе белков острой фазы воспаления. Абсолютная гиперпротеинемия наблюдается при следующих заболеваниях:

· парапротеинемических гемобластозах (миеломная болезнь, болезнь Вальденстрема, болезнь тяжелых цепей) — отмечается значительное — до 120 — 160 г/л - возрастание концентрации общего белка;

· болезни Ходжкина;

· хроническом полиартрите;

· активном хроническом гепатите;

· острых и хронических инфекциях;

· аутоиммунных заболеваниях;

· саркоидозе;

· циррозе печени без выраженной печеночно-клеточной недостаточности.

Гипопротеинемия

Снижение концентрации общего белка в сыворотке крови также может быть относительным и абсолютным.

Относительная гипопротеинемия, как правило, связана с увеличением объема воды в кровеносном русле и наблюдается при следующих состояниях:

· водной нагрузке («водном отравлении»);

· прекращении отделения мочи (анурии);

· уменьшении диуреза (олигурии);

· внутривенном введении больших количеств раствора глюкозы больным с нарушенной выделительной функцией почек;

· сердечной декомпенсации;

· повышенной секреции в кровь антидиуретического гормона гипоталамуса - гормона, способствующего задержке воды в организме.

Абсолютная гипопротеинемия, как правило, связана с гипоальбуминемией. При этом уменьшение концентрации общего белка в сыворотке крови возникает при:

· недостаточном поступлении белка в организм (голодание, недоедание, сужение пищевода, нарушение функции желудочно-кишечного тракта, например, воспалительного характера — энтериты, энтероколиты и др.);

· подавлении биосинтеза белка, сопровождающем хронические воспалительные процессы в печени (гепатиты, циррозы печени, интоксикации, атрофия печени);

· врожденных нарушениях синтеза отдельных белков крови (анальбуминемия, болезнь Вильсона-Коновалова, другие дефектопротеинемии — значительно более редко);

· повышенном распаде белка в организме (злокачественные новообразования, обширные ожоги, гиперфункция щитовидной железы (тиреотоксикоз), состояния после операции, длительная лихорадка, травмы, длительное лечение кортикостероидами);

· повышенной потере белка (нефротический синдром, гломерулонефрит, сахарный диабет, длительный (хронический) понос, кровотечения);

· перемещении белка в «третьи» пространства (асцит, плеврит).

Уменьшение концентрации общего белка в сыворотке крови отмечается и при некоторых физиологических состояниях, например, при длительной физической нагрузке, у женщин в последние месяцы беременности и в период лактации.

На уровень общего белка в сыворотке крови может оказывать влияние прием некоторых лекарственных препаратов. Так, например, кортикотропин, кортикостероиды, мисклерон, бромсульфалеин и клофибрат способствуют повышению концентрации общего белка в сыворотке, а пиразинамид, эстрогены — его снижению.

На степень концентрации общего белка может оказывать влияние и положение тела: при изменении горизонтального положения тела на вертикальное концентрация общего белка повышается приблизительно на 10% в течение 30 минут.

Пережатие сосудов во время взятия крови и «работа рукой» также могут привести к возрастанию концентрации общего белка в сыворотке крови.

При интерпретации результатов определения общего белка сыворотки крови необходимо учитывать значение гематокрита — в ряде случаев это помогает отличить относительное изменение общего белка от абсолютного, а следовательно, правильно поставить диагноз и определиться с тактикой лечения.

16)Альбумины и глобулины сыворотки крови, содержание в норме, функции.Альбуминово-глобулиновый коэффициент

(Гезалян: не знаю чей вопрос, но тут была табл, которую я сознательно убрал, она есть в 15 вопросе)

 

На долю альбуминов приходится более половины (55-60%) белков плазмы крови человека.Благодаря высокой гидрофильности, особенно небольшим размером молекул и знач конц в сыворотке, альбумину играют важную роль в поддержание онкотического давления крови.Известно, что концентрация альбуминов в сыворотке ниже 30 г/л выз знач изменения онкотического давления., что приводит к возникновению отеков. Альбумины выполняют ваажную ф-ию транспорта многих биологических активных веществ(в частности гормонов).Они способны связываться с холестерином, желчными пигментами.Значительная часть кальция в сыворотке крови также связана с альбинами.

Глобулины – крупномолекулярные белки, количества их доходит до 3 %

  • определяют иммунные свойства организма;
  • определяют свертываемость крови;
  • участвуют в транспорте железа и в других процессах.

Альбумин - глобулиновый коэффициент — соотношение альбуминов и глобулинов крови, величина в норме относительно постоянная (1,5—2,3).

17)Ферменты крови. Происхождение ферментов крови,диагностическое значение определения

Ферменты, которые обнаруживаются в норме в плазме или сыворотке крови, условно можно разделить на 3 группы секреторные, индикаторные,экскреторные.

Секреторные ферменты, синтезируясь в печени, в норме выделяются в плазму крови, где играют опреленную физиологическую роль. Типичными представителями являются ферменты, участвующие в процессе свертывания крови и сывороточная холинэстераза.

Индикаторные(клеточные) ферменты попадают в кровь из тканей, где они выполняют определенные внутриклеточные ф-ии. Один из них находится главным образом в цитозоле клетки (ЛДГ, алдолаза), другие – в митохондрях (глутаматдегидрогеназа), третьи- в лизосомах (бета-глюкоронидаза, кислая фосфотаза). В физиологических условиях эти ферменты выделяются с желчью. Еще не полностью выяснены механизмы, регулирующие поступления данных ферментов в желчные капилляры.

Особый интерес для клиники представляет исследование индикаторных ферментов в сыворотки крови, так как при повышении можно судить о функц состоянии и поражении различ органов(например печени, сердечной и скелетной мускулутуры)

18)Кининовая система, представители, физиологическая роль кининов.(не оч)

Кинин-калликреиновая система — группа белков крови, играющих роль в воспалении, контроле артериального давления, коагуляции и возникновении болевых ощущений. Важнейшими компонентами данной системы являются брадикинин и каллидин.

Полипептиды

  • Брадикинин, действующий на В2 и в меньшей степени на B1 рецепторы, образуется из ВМК под действием калликреина. По химическому составу — нонапептид.
  • Каллидин — декапептид, высвобождающийся из НМК при воздействии на него тканевого калликреина.

Ферменты

  • Калликреины (тканевой и плазменный) — сериновые протеазы, катализирующие образование кининов из кининогенов[4]. Прекалликреин служит предшественником плазменного калликреина. Он может катализировать образование кининов только после активации фактором Хагемана.
  • Карбоксипептидазы присутствуют в двух формах: циркулирующей N-форме и связаной с мембраной M-формой.
  • Ангиотензинпревращающий фермент (АПФ или кининаза II) инактивирует группу пептидов, включая брадикинин. Катализирует образованиеангиотензина II из ангиотензина I.
  • Нейтральная эндопептидаза также инактивирует кинины.

 

Кинины - группа олигопептидов с большим спектром физиологической активности, участвующих в регуляции тонуса сосудов, уровня артериального давления, проницаемости,болевых реакциях организма. Кинины образуются как эффекторные субстанции калликреиновой системы и являются связующим звеном между системами регуляции сосудистого тонуса исистемами свертывания крови и фибринолиза. В тканях млекопитающих идентифицированы четыре типа кининов: нонапептид брадикинин, каллидин, Mel-Lys- брадикинин и Т-кинин. Многообразна роль кининов в патологических процессах: воспаление, отек, нарушения гемодинамики, ишемическое повреждение миокарда, нефротический синдром, бронхиальная астма и др.

 

КОАГУЛОПАТИИ

Коагулопатии (coagulopathiae) — патологические состояния, связанные с нарушением в системе свертывания крови, приводящие обычно к развитию геморрагического синдрома.

Коагулопатии делятся на:

наследственные;

приобретенные.

 

Наследственные коагулопатии вызваны генетически обусловленным снижением количества плазменных компонентов гомеостаза или их некачественностью. Самые распространенные формы коагулопатии – афибриногенемия и гемофилии А, В, С.

 

Наследственные коагулопатии делятся на:

Гемофилии: А-дефицит VIII фактора, В-дефицит IX фактора, С-дефицит XI фактора, Д-дефицит XII;

Парагемофилия: дефицит II, V, VII, X факторов;

Нарушение образования фибрина, дефицит фибриногена (I фактора).

 

Приобретенные коагулопатии вызываются инфекционными заболеваниями, тяжелыми энтеропатиями, болезнями печени и почек, геморрагическими васкулитами, злокачественными опухолями и другими заболеваниями. Коагулопатия может возникнуть в результате химических, механических, фармацевтических и физических воздействий.

 

Одним из видов коагулопатий является гемодилюционная коагулопатия, она развивается у больных с острой кровопотерей, вызванной потерей белка или клеток крови, в первую очередь тромбоцитов.

 

Клинические проявления коагулопатии:

бледность кожи;

геморрагический синдром;

кровоизлияния в мягкие ткани, вызывающие обширные гематомы;

гамартрозы;

внутренние кровоизлияния;

гематурия.

 

Тромботические сосотояния - это патологическое состояние, характеризующееся нарушением системы свёртываемости крови при которой увеличивается риск развития тромбоза.

ДВС -синдром – сидром дессиминированного внутрисосудистого свертывания. Фазы:

I фаза — гиперкоагуляция. Потеря факторов свертывающей системы в процессе обильного кровотечения приводит к удлинению времени образования сгустка и его ретракции, удлинению времени капиллярного кровотечения. Лабораторные показатели: уменьшение времени свертывания крови, тромбинового времени, положительный этаноловый тест.

II фаза — гипокоагуляция. При геморрагическом шоке в фазе спазма венул и артериол (клинические проявления: дегидратация, бледные и холодные кожные покровы, признаки острой почечной недостаточности) в капиллярах развивается расслоение плазмы и форменных элементов — “сладж”-феномен. Агрегация форменных элементов, обволакивание их фибрином сопровождаются потреблением факторов свертывания крови и активацией фибринолиза. Лабораторные показатели: умеренная тромбоцитопения (до 120 × 10^9/л), тромбиновое время 60 с и больше, резко положительный этаноловый тест.’



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 254; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.144.42.196 (0.125 с.)