ТОП 10:

Связь напряженности с потенциалом Эл.п.



Пусть зар. q перемещается вдоль силовой линии оси Х из точки 1в точку 2.

работа сил поля ,

Аналогично имеем выражение для других компонентов Е:

, где i , j , k – орты(единичные векторы)

Его можно переписать в виде оператора Набла

выражение для Е можно написать следующим образом

имеет следующее определение:

- напряженность Эл.п. в данной точке = градиенту потенциала взятым в этой точке с обратным знаком, здесь «-» означает, что направлена в сторону убывания потенциала.

(в однородном поле)

Напряженность поля = скорости убывания потенциала по заданному направлению х.

Для эл-ст поля дост знать только потенциал:

 

 

 

60 Применение теоремы Гаусса к расчету электростатических полей

Теорема Гаусса совместно с принципом суперпозиции позволяет вычислять поля при симметричном расположении зарядов.

а) поле бесконечной, равномерно заряженной плоскости.

Пусть плоскость заряжена с поверхностной плотностью заряда σ:

За Гауссовую поверхность возьмем прямой круговой цилиндр с осью перпендикулярной плоскости и основаниям dS . Поток напряженности через боковую поверхность цилиндра равен 0

En=0 ,остается поток через основание цилиндра

 

dNE=EdS+EdS=2EdS, dq=σdS, 2EdS= , , Если в среде:

б) Поля двух равномерно заряженных плоскостей. Пусть плоскости заряжены с поверхностной плоскостью заряда σ

, - внутри

Вне E=0

Среда ,

в) Поле заряженной сферы

Рассмотрим заряженную сферу с поверхностной плотностью заряда : . За Гауссовую поверхность возьмем сферу с r.

, , ,

. Среда:

г)Поле заряженного шара.

д) Поле заряженной бесконечной нити

r
E(r)

 

70 Статическое поле в веществе. Электрический диполь. Поляризованные заряды. Поляризованность

По электропроводности материалы делятся: 1. Проводники (металлы, электролиты); 2. Полупроводники (германий, кремний); 3. Диэлектрики (стекло, вата).

Диэлектрики проводят электрический ток 1015 1020 раз хуже чем проводники. Молекулы и атомы, диэлектрики в целом электрически нейтральны. Электрические заряды в атомах и молекулах связаны друг с другом и не могут перемещаться по всему объему диэлектрика. Также заряды называются поляризованными, связанными. Заряды, которые могут перемещаться называются свободными (сторонними).

В зависимости от строения молекул различают три типа диэлектриков: 1.Неполярные; 2.Полярные; 3.Кристаллические

Если в отсутствии внешнего электрического поля E=0 ,центры распределения положительных и отрицательных зарядов смещаются в противоположные стороны на малое расстояние по сравнению с размерами молекул. Такую молекулу рассматривают как упругий диполь.

Электрический диполь – система двух равных по величине, но противоположные по знаку электрических зарядов, находящихся близко друг к другу по сравнению с расстояниями, на которых рассматривается этот диполь.

Основная характеристика диполя – электрический дипольный момент

Это произведение положительного заряда на плечо.

Если в отсутствии внешнего электрического поля распределения положительных и отрицательных зарядов молекул не совпадают из-за ассиметричного строения молекулы называется полярной, а диэлектрик –полярным.

Полярным диэлектриком является вода.

При отсутствии внешнего поля дипольные моменты отдельных молекул ориентированы хаотично в силу теплового движения молекул и в целом диэлектрик не имеет дипольного момента.

Во внешнем электрическом поле диполи ориентируются по полу и дипольный момент диэлектрика отмечают 0.

Кристаллические диэлектрики имеют ионное строение, во внешнем поле происходит смещение положительных и отрицательных ионов ,диэлектрики приобретают дипольный момент.

Поляризация диэлектрика:

Во внешнем эл.поле есть переход диэлектрика в такое состояние , когда дипольный момент всего объема отличен от 0.

За меру поляризации диэлектрика принимают поляризованность .
–дипольный момент единицы объема

Суммирование происходит по всем дипольным моментам находящимся в объеме V.

Единицы измерения дипольного момента

[p]=Кл/м2

 

 

 

 

 

13. Энергия электрических зарядов заряженных проводников и конденсаторов.

W12=(q1q2)/4πεε0r.

Рассмотрим теперь заряженный проводник,чтобы увеличить заряд проводника на dq надо переместить этот заряд из бесконечности на проводник и совершить при этом работу, против сил электрического поля проводника:

dA=dq(φ-φ∞) , φ∞=0, dA=dqφ , dA=Cφdφ. Эта работа идет на увеличение энергии проводника, dA=dW, dW=Cφdφ, W=Cφ2/2+const.

Рассмотрим энергию заряженного конденсатора, пусть малый заряд dq проходит между обкладками конденсатора тогда работа по перемещению заряда dq/dA=Udq. Т.к. q=CU , dq=CdU , dA=CUdU-это работа по перемещению заряда , W=CU2/2=U2/2C=qu/2. Если свободные зар распред непрерывно по объёму с объёмной плотностью и по пов-ти заряж проводн с пов-ной плотностью, то энерг такой сист им вид:

 

В общем случае энергия:

 

Плотность тока числ = отнош силы тока проход через эл площ по нормали к напр движ зар. Плотность тока – в-р совпад с напр движ «+» зар, напр тока в частн, если ток течёт равномерно:

 







Последнее изменение этой страницы: 2016-08-06; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.200.222.93 (0.005 с.)