Правило Киргоффа расчёта разветвлённых электр.цепей. 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Правило Киргоффа расчёта разветвлённых электр.цепей.



Рассмотрим электр. цепь.

А и В - узлом называется точка в которой сходятся 3 и более проводника.

1 правило Кирхгоффа: «алгебр сумма токов сход в узле = 0»

=0

ток I входящий в узел счит «+», вых «-».

узел A: I1-I2-I=0 (1), узел B:-I1-I2+I=0 (2)

2 правило Кирхгоффа: «алгебр сумма произв сил токов на сопротивление соотв уч контура = алгебр сумме ЕДС в рассм контуре»: = При этом выбирают определённое направление обхода контура, если направление тока совпадает с направлением обхода контура то его считают положительным. ЭДС считают + если при выбранном направлении ток проходит от – к +. При этом число независимых уравнений получается меньше чем общее число контуров.

r 1 1R1: I1r1+IR= 1 (3)

1 r 1 2 r 2:I1r1-I2r2= 1- 2 (4)

R 2 r 2:I2 r2+IR= 2 (5)

(4)+(5) 3. (1) (3) (4) позволяют найти токи I1 I2 I

 

 

20. Закон Ома в классической электронной теории

Основные положения классической электронной теории Mе:

1) в Mе имеющих поликристаллическую структуру имеются свободные электроны: электроны положительности, электронный газ;

2) электроны участвуют в упорядоченном и хаотическом движениях. Упорядоченные движения описываются механикой Ньютона: F=ma

3) хаотическое движение электрона описывается моделью идеального газа, подчиняющегося классической статистике Максвелла-Больцмана.

4) между кристаллической решеткой Ме и электронами проводимости устанавливается тепловое равновесие.

Получим дифференциальную форму закона Ома из электронной связи:

плотность j связана с концентрацией электронов n, зарядом e, скоростью упорядоченного движения <v> соотношением:

j=en<v>, I=q/t=enV/t=enSl/t=enSv, I/S=env, j=en<v>

Пусть «е» при соудар с узлом кристаллической решетки полностью передает всю энергию решетке и нач движение с vo=0. Под действ эл-кого поля с напряженностью E на «е» будет действ сила: F=eE. Тогда «е» приобретает ускорение: a=F/m=eE/m. Мax скорость электрона в конце свободного пробега будет равна: vmax=a<τ>; <τ> - среднее время свободного пробега. vmax=eE/m<τ>. Т.к. движение электрона равноускоренное, то скорость электрона равна: . Ср время свободного пробега <τ> равно отношению ср длины св проб <l> к ср скор хаотического движения электронов <u>: <τ> =<l>/<u>. <v>=eE<l>/2m<u>. В этом случае мы пренебрегаем скоростью упорядоченного движения электронов в сравнении со скоростью хаотического, теплового движения электронов: <u> >> <v>: Т обр пол: j=e·n·e·E<l>/2m<u>=δE; δ=e2n<l>/2m<u> - электропроводность (j= δE). Если бы «е» не сталкивались с узлами решетки, то ср длина своб пробега l=∞ и электропроводность δ=∞ и не было бы эл-кого сопротивления. Тогда электрическое сопротивление мет в классической электронной теории вызвано столкновением свободных электронов с ионами решетки. По классической теории удельное сопротивление ρ=1/δ пропорционально средней скорости теплового движения <u>: <u>=√(8kT/2m)~√T. из опыта вытекает, что ρ=ρо(1+αT)

Классическая электронная теория расходится с опытом потому, что:

1) движение электронов в Ме описывается не II законом Ньютона, а уровнением квантовой механики Шредингера;

2) поведение эл. газа подчиняется не классической теории Максвелла-Больцмана, а Ферми- Дирака;

3) при низких температурах взаимодействие между электронами доминирует над взаимодействием между электронами и решеткой.

В квантовой механике электроны проявляют волновые свойства и тогда сопротивление Ме обусловлено рассеиваньем электронных волн на квантах колебаний узлов кристаллической решетки – фононах.

21. Сила Ампера. Вектор магнитной индукции

Оп путем было устан, что движущиеся эл-кие заряды, т. е. токи создают магнитные поля. Магнитное поле проявляется под действием сил магнитного взаимодействия. Магнитное поле в отличие от эл-кого действует только на движ заряды, на покоящиеся заряды не действует. (монополь – магнитный заряд) Сп-сть магнитного поля вызывать мех силу в каждой точке поля, действ на элемент тока Id(в-р)l хар-тся магнитной индукцией (вектор) B. Эл-т тока Id(в-р)l есть произв силы тока I на беск малый отрезок проводника d(в-р)l, направл по току. dI(в-р)l играет роль пробного заряда в электростатике. Ампер эксп-но установил, что сила d(в-р)F действ на элемент тока Id(в-р)l с индукцией (в-р) B равна: – закон Ампера (сила Ампера). Если проводник прямолинейный и магнитное поле однородное (одинаковое в каждой точке), интегрируя последнее выражение, получаем: . Направление силы Ампера (в-р)F опр по правилу в-рного произведения. Сила (в-р)F ┴-а пл-сти, в кот лежат в-ры l и B и напр силы (в-р)F опред правилом правого винта: «если рукоятка правого винта вращается от первого вектора l ко второму ве-ру B на кратчайший угол, то поступательное движ винта указ направление силы (в-р)F». Модуль силы Ампера: . Сила Ампера нецентральная, т. е. зависит от ориентации проводника с током в магнитном поле. Из з-на Ампера обычно определяют магнитную индукцию (в-р) B. Пусть проводник прямолинейный и ┴-ый однородному магнитному полю (в-р) B: F=IlB, B=F/Il. Магнитная индукция (вектор) B – силовая, в-ная хар-ка магнитного поля, числ равная силе, действ- со стороны однородного магнитного поля на единицу длины проводника, по которому течет ток =1А и расположение проводника ┴-о напр магнитного поля. Ед изм В в системе СИ явл Тесла (Тл). 1 Тесла – магнитная индукция такого однородного магнитного поля, кот действует с силой 1Н на каждый метр длины проводника с током 1А и расположенное ┴-о магнитному полю: 1Тл=1Н/(1А*1м). Из опытов вытекает, что для магнитных полей справедлив принцип суперпозиции: . Поле (в-р) B, порожденное несколькими движущими зарядами или токами, равно в-рной сумме полей (в-р)Bi, порожденных каждым зарядом или током в отдельности. Магнитное поле, как и эл-кое, изображается магнитными силовыми линиями – линиями (в-р) B. Линии магнитной индукции (в-р) B – это линии, касат к кот в каждой точке совпадают с напр в-ра B. Линии (в-р) B всегда замкнуты, что указывает на вихревой характер магнитного поля, на отсутствие магнитных зарядов, на кот могли бы начинаться и заканчиваться силовые линии. По густоте силовых линий судят о величине магнитного поля; там где силовые линии редкие – магнитное поле слабое.

Линии индукции прямолинейного проводника с током представляют собой концентрические окружности, центры которых лежат на оси тока.

При поступательном движении правого винта направление вращения рукоятки винта указывает направление силовых линий.

 

Закон Био-Савара-Лапласа

З-н БСВ даёт выражение для магнитной индукции d , создаваемой элементом I d в точке, характеризуемой радиус-вектором , проведённым из элемента проводника d в искомую точку.

Id

|

µ |α

|

|

|

d

З-н БСЛ:

µ0 — магнитная постоянная=4π·10-7 Гн/м; µ — магнитная проницаемость среды

Модуль индукции |dB|: . Наряду с магнитной индукцией, можно характеризовать напряжённость магнитного поля. Дл изотропного случая:

З-н БСЛ для напряжённости принимает вид:

З-н БСЛ совместно с принципом суперпозиции допускает в принципе вычисление магнитных полей любой конфигурации токов.

 

 



Поделиться:


Последнее изменение этой страницы: 2016-08-06; просмотров: 208; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.138.122.195 (0.008 с.)