Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Абсолютно неупругий удар. Абсолютно упругий удар.Содержание книги
Поиск на нашем сайте
Абсолю́тно неупру́гий удар — удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело. Где v это общая скорость тел, полученная после удара, ma - масса первого тела, ua - скорость первого тела до соударения. mb - масса второго тела, ub -скорость второго тела до соударения. Важно - импульсы являются величинами векторными, поэтому складываются только векторно. Как и при любом ударе, при этом выполняются закон сохранения импульса и закон сохранения момента импульса, но не выполняется закон сохранения механической энергии. Часть кинетической энергии соудареямых тел в результате неупругих деформаций переходит в тепловую. Хорошая модель абсолютно неупругого удара — сталкивающиеся пластилиновые шарики. Абсолютно упругий удар — модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков. Математическая модель абсолютно упругого удара работает примерно следующим образом: Есть в наличии два абсолютно твердых тела, которые сталкиваются В точке контакта происходят упругие деформации. Кинетическая энергия движущихся тел мгновенно переходит в энергию деформации. В следующий момент деформированные тела принимают свою прежнюю форму, а энергия деформации вновь переходит в кинетическую энергию. Контакт тел прекращается и они продолжают движение. Для математического описания простейших абсолютно упругих ударов, используется закон сохранения энергии и закон сохранения импульса.
Здесь m1, m2 - массы первого и второго тел. u1, v1 - скорость первого тела до, и после взаимодействия. u2, v2 - скорость второго тела до, и после взаимодействия.
Импульсы складываются векторно, а энергии скалярно. Вращение тела вокруг неподвижной оси. Вращением твердого тела вокруг неподвижной оси (или просто вращательным движением) называется такое движение твердого тела, при котором в теле можно выделить прямую, все точки которой будут оставаться неподвижными во время движения. Эта прямая называется осью вращения твердого тела. Кинематические характеристики Вращение характеризуется углом , измеряющимся в градусах или радианах, угловой скоростью (измеряется в рад/с) и угловым ускорением (единица измерения — рад/с²). При равномерном вращении (T оборотов в секунду), · Частота вращения — число оборотов в единицу времени. , · Период вращения — время одного полного оборота. Период вращения T и его частота связаны соотношением . · Линейная скорость точки, находящейся на расстоянии R от оси вращения , · Угловая скорость вращения тела . Динамические характеристики Свойства твердого тела при его вращении описываются моментом инерции твёрдого тела. Кинетическую энергии вращения можно записать в виде . Момент инерции выражает геометрическое распределение массы в теле и может быть найден из формулы . · Момент инерции механической системы относительно неподвижной оси a — физическая величина Ja, равная сумме произведений масс всех n материальных точек системы на квадраты их расстояний до оси: , где: mi — масса i -й точки, ri — расстояние от i -й точки до оси. Осевой момент инерции тела Ja является мерой инертности тела во вращательном движении вокруг оси a подобно тому, как масса тела является мерой его инертности в поступательном движении. · Кинетическая энергия вращательного движения
где Jz — момент инерции тела относительно оси вращения. — угловая скорость 14. Момент инерции тела. Расчет момента инерции некоторых тел. Момент инерции — скалярная физическая величина, численно равная произведению массы материальной точки на квадрат расстояния до оси вращения. Единица измерения СИ: кг·м². , Согласно теореме Штейнера момент инерции тела J относительно произвольной оси равен сумме момента инерции этого тела Jc относительно оси, проходящей через центр масс тела параллельно рассматриваемой оси, и произведения массы тела m на квадрат расстояния d между осями:
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 186; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.219.44.171 (0.007 с.) |