Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Принцип двоичного кодирования↑ Стр 1 из 3Следующая ⇒ Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Архитектура фон Неймана Архитектура фон Неймана (англ. von Neumann architecture) — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных. Принципы Принцип двоичного кодирования Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов (двоичных цифр, битов) и разделяется на единицы, называемые словами. Принцип однородности памяти Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Принцип адресуемости памяти Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен. Принцип последовательного программного управления Предполагает, что программа состоит из набора команд, которые выполняются процессором автоматически друг за другом в определенной последовательности. Принцип жесткости архитектуры Неизменяемость в процессе работы топологии, архитектуры, списка команд. Понятие информационных систем, систем обработки данных, вычислительных систем. Информационная система включает базы данных, СУБД и специализированные прикладные программы. ИС рассматривают как программно-аппаратную систему, предназначенную для автоматизации целенаправленной деятельности конечных пользователей, обеспечивающую, в соответствии с заложенной в нее логикой обработки, возможность получения, модификации и хранения информации. Основной задачей ИС является удовлетворение конкретных информационных потребностей в рамках конкретной предметной области. Современные ИС немыслимы без использования баз данных и СУБД, поэтому термин «информационная система» на практике сливается по смыслу с термином «система баз данных». Системы обработки данных - комплекс методов и средств сбора и обработки данных, необходимых для организации управления объектам. Функции С. о. д. — сбор, хранение, поиск, обработка необходимых для выполнения этих расчётов данных с наименьшими затратами. Вычислительная система - это рассматриваемый как единое целое комплекс, предназначенный решать определенные задачи, в котором задействованы центральный процессор, память и различные внешние устройства. Функционирование ЭВМ. Процесс и поток. 1.Функционирование ЭВМ. Процесс и поток. Функционирование ЭВМ с шинной организацией. Шинная организация является простейшей формой организации ЭВМ. В соответствии с приведенными выше принципами фон Неймана подобная ЭВМ имеет в своем составе следующие функциональные блоки: центральный процессор (ЦП) - функциональная часть ЭВМ, выполняющая основные операции по обработке данных и управлению работой других блоков. Центральный процессор состоит из следующих взаимосвязанных составных элементов: арифметико-логического устройства, устройства управления и регистров. Память - устройство, предназначенное для запоминания, хранения и выборки программ и данных. Память состоит из конечного числа ячеек, каждая из которых имеет свой уникальный номер или адрес. Доступ к ячейке осуществляется указанием ее адреса. Оперативная память (ОП) - функциональный блок, хранящий информацию для устройств управления (команды) и арифметико-логического устройства (данные). Задачи, решаемые с помощью ЭВМ, требуют хранения в памяти различного количества информации, зависящего от сложности реализуемого алгоритма, количества исходных данных и т.п. Система шин. Объединение функциональных блоков в ЭВМ осуществляется посредством следующей системы шин: шины данных, по которой осуществляется обмен информацией между блоками ЭВМ; шины адреса, используемой для передачи адресов (номеров ячеек памяти или портов ввода-вывода, к которым производится обращение); и шины управления для передачи управляющих сигналов. Совокупность этих трех шин называют системной шиной, системной магистралью или системным интерфейсом. Процессы и потоки До сих пор концепцию процесса можно было охарактеризовать двумя параметрами. • Владение ресурсами (resource ownership). Процесс включает виртуальное адресное пространство, в котором содержится образ процесса, и время от времени может владеть такими ресурсами, как основная память, каналы и устройства ввода-вывода, или файлы, или же получать контроль над ними. Операционная система выполняет защитные функции, предотвращая нежелательные взаимодействия процессов на почве владения ресурсами. • Планирование/выполнение (scheduling/execution). Выполнение процесса осуществляется путем выполнения кода одной или нескольких программ; при этом выполнение процесса может чередоваться с выполнением других процессов. Таким образом, процесс имеет такие параметры, как состояние (выполняющийся процесс, готовый к выполнению процесс и т.д.) и текущий приоритет, в соответствии с которым операционная система осуществляет его планирование и диспетчеризацию. В большинстве операционных систем эти две характеристики являются сущностью процесса. Но они являются независимыми, и операционная система может рассматривать их отдельно друг от друга. В некоторых операционных системах (в особенности в недавно разработанных) так и происходит. Чтобы различать две приведенные выше характеристики, единицу диспетчеризации обычно называют потоком (thread) или облегченным процессом (lightweight process), а единицу владения ресурсами — процессом (process) или заданием (task). Кэширование памяти Кэш (англ. cache, от фр. cacher — «прятать»; произносится [k??] — «кэш») — промежуточный буфер с быстрым доступом, содержащий информацию, которая может быть запрошена с наибольшей вероятностью. Доступ к данным в кэше идёт быстрее, чем выборка исходных данных из оперативной (ОЗУ) и быстрее внешней (жёсткий диск или твердотельный накопитель) памяти, за счёт чего уменьшается среднее время доступа и увеличивается общая производительность компьютерной системы. Кэш-память представляет собой статическое ОЗУ, обладающее значительно более высоким быстродействием, нежели динамическое. Фактически, кэш-память предназначена для согласования (компенсации) скорости работы сравнительно медленных устройств с относительно быстрым центральным процессором, т.е. она играет роль быстродействующего буфера между процессором и относительно медленной динамической памятью.При попытке доступа к данным процессор сначала обращается к внутренней кэш-памяти, если их там нет, то ко внешней, лишь затем к основной динамической памяти.Когда процессор первый раз обращается к ячейке памяти, ее содержимое параллельно копируется в кэш, и в случае повторного обращения может быть с гораздо большей скоростью выбрано из кэша. Архитектура кэш-памяти Кэш центрального процессора разделён на несколько уровней. В универсальном процессоре в настоящее время число уровней может достигать 3. Кэш-память уровня N+1 как правило больше по размеру и медленнее по скорости доступа и передаче данных, чем кэш-память уровня N. Самой быстрой памятью является кэш первого уровня — L1-cache. По сути, она является неотъемлемой частью процессора, поскольку расположена на одном с ним кристалле и входит в состав функциональных блоков. В современных процессорах обычно кэш L1 разделен на два кэша, кэш команд (инструкций) и кэш данных. Вторым по быстродействию является L2-cache — кэш второго уровня, обычно он расположен на кристалле, как и L1. В старых процессорах — набор микросхем на системной плате. Объём L2 кэша от 128 Кбайт до 1?12 Мбайт. В современных многоядерных процессорах кэш второго уровня, находясь на том же кристалле, является памятью раздельного пользования — при общем объёме кэша в nM Мбайт на каждое ядро приходится по nM/nC Мбайта, где nC количество ядер процессора. Обычно латентность L2 кэша, расположенного на кристалле ядра, составляет от 8 до 20 тактов ядра. Кэш третьего уровня наименее быстродействующий, но он может быть очень внушительного размера — более 24 Мбайт. L3 кэш медленнее предыдущих кэшей, но всё равно значительно быстрее, чем оперативная память. В многопроцессорных системах находится в общем пользовании и предназначен для синхронизации данных различных L2.
Режимы работы процессоров Процессоры персональных компьютеров могут работать в трех режимах: реальном, защищенном и виртуальном режимах. Реальный режим Первоначально персональные компьютеры фирмы IBM могли адресовать только 1 Мбайт оперативной памяти.Когда процессор работает в реальном режиме, он может обращаться к памяти только в пределах 1 Мбайт (как и процессор Intel 8086), и не может использовать 32-разрядные и 64-разрядные операции. Процессор попадает в реальный режим сразу же после запуска. В реальном режиме работают операционные системы DOS и стандартные DOS-приложения. Защищенный режим Это более мощный режим работы процессора по сравнению с реальным режимом. Он используется в современных многозадачных операционных системах. Защищенный режим имеет много преимуществ: - В защищенном режиме доступна вся системная память (не существует предела 1 Мбайт). - В защищенном режиме операционная система может организовать одновременное выполнение нескольких задач (многозадачность). - В защищенном режиме поддерживается виртуальная память — операционная система при необходимости может использовать жесткий диск в качестве расширения оперативной памяти. - В защищенном режиме осуществляется быстрый (32/64-разрядный) доступ к памяти и поддерживается работа 32-х разрядных операций ввода-вывода. Виртуальный режим Защищенный режим используют графические многозадачные операционные системы, такие как Windows. Иногда возникает необходимость выполнения DOS-программ в среде операционной системы Windows. Но DOS-программы работают в реальном режиме, а не в защищенном. Для решения этой проблемы был разработан виртуальный режим или режим виртуального процессора 8086. Этот режим эмулирует (имитирует) реальный режим, необходимый для работы DOS-программ, внутри защищенного режима. Операционные системы защищенного режима (такие как Windows) могут создавать несколько машин виртуального режима — при этом каждая из них будет работать так, как будто она одна использует все ресурсы персонального компьютера. Каждая виртуальная машина получает в свое распоряжение 1 Мбайтное адресное пространство, образ реальных программ BIOS и т.п. Виртуальный режим используется при работе в DOS-окне или при запуске DOS-игр в операционной системе Windows 98/Ме. При запуске на компьютере DOS-приложения операционная система Windows создает виртуальную DOS-машину, в которой выполняется это приложение. RAID-массивы RAID (англ. redundant array of independent disks — избыточный массив независимых жёстких дисков) — массив из нескольких дисков, управляемых контроллером, взаимосвязанных скоростными каналами и воспринимаемых внешней системой как единое целое. В зависимости от типа используемого массива может обеспечивать различные степени отказоустойчивости и быстродействия. Служит для повышения надёжности хранения данных и/или для повышения скорости чтения/записи информации (RAID 0). RAID 0 (striping — «чередование») — дисковый массив из двух или более жёстких дисков с отсутствием резервирования. Информация разбивается на блоки данных () и записывается на оба/несколько дисков одновременно. (+): За счёт этого существенно повышается производительность (от количества дисков зависит кратность увеличения производительности). (-): Надёжность RAID 0 заведомо ниже надёжности любого из дисков в отдельности и падает с увеличением количества входящих в RAID 0 дисков, т. к. отказ любого из дисков приводит к неработоспособности всего массива. RAID 1 (mirroring — «зеркалирование»). (+): Обеспечивает приемлемую скорость записи и выигрыш по скорости чтения при распараллеливании запросов. (+): Имеет высокую надёжность — работает до тех пор, пока функционирует хотя бы один диск в массиве. Вероятность выхода из строя сразу двух дисков равна произведению вероятностей отказа каждого диска. На практике при выходе из строя одного из дисков следует срочно принимать меры — вновь восстанавливать избыточность. Для этого с любым уровнем RAID (кроме нулевого) рекомендуют использовать диски горячего резерва. Достоинство такого подхода — поддержание постоянной доступности. (-): Недостаток заключается в том, что приходится выплачивать стоимость двух жёстких дисков, получая полезный объём одного жёсткого диска (классический случай, когда массив состоит из двух дисков). SSD-накопитель Твердотельный накопитель (англ. SSD, solid-state drive) — компьютерное запоминающее устройство на основе микросхем памяти. Кроме них, SSD содержит управляющий контроллер. Не содержит движущихся механических частей, Различают два вида твердотельных накопителей: SSD на основе памяти, подобной оперативной памяти компьютеров, и SSD на основе флеш-памяти. Главный недостаток SSD — ограниченное количество циклов перезаписи. Обычная [обтекаемые выражения](MLC, Multi-level cell, многоуровневые ячейки памяти) флеш-память позволяет записывать данные примерно 10 000 раз. Более дорогостоящие виды памяти (SLC, Single-level cell, одноуровневые ячейки памяти) — более 100 000 раз[9]. Для борьбы с неравномерным износом применяются схемы балансирования нагрузки. Контроллер хранит информацию о том, сколько раз какие блоки перезаписывались и при необходимости «меняет их местами» Преимущества Отсутствие движущихся частей; Высокая скорость чтения/записи, нередко превосходящая пропускную способность интерфейса жесткого диска (SAS/SATA II 3 Gb/s, SAS/SATA III 6 Gb/s, SCSI, Fibre Channel и т. д.); Низкое энергопотребление; Полное отсутствие шума из-за отсутствия движущихся частей и охлаждающих вентиляторов; Высокая механическая стойкость; Широкий диапазон рабочих температур; Стабильность времени считывания файлов вне зависимости от их расположения или фрагментации; Малые габариты и вес; Большой модернизационный потенциал, как у самих накопителей, так и у технологий их производства. Намного меньшая чувствительность к внешним электромагнитным полям. Видеосистема видеокарта - устройство, преобразующее графический образ, хранящийся, как содержимое памяти компьютера или самого адаптера, в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой. В настоящее время эта функция утратила основное значение, и в первую очередь под графическим адаптером понимают устройство с графическим процессором - графический ускоритель, который и занимается формированием самого графического образа. Современная видеокарта состоит из следующих частей: графический процессор, видеоконтроллер, видеопамять, цифро-аналоговый преобразователь, видео-ПЗУ, система охлаждения. Архитектура фон Неймана Архитектура фон Неймана (англ. von Neumann architecture) — широко известный принцип совместного хранения программ и данных в памяти компьютера. Вычислительные системы такого рода часто обозначают термином «машина фон Неймана», однако соответствие этих понятий не всегда однозначно. В общем случае, когда говорят об архитектуре фон Неймана, подразумевают физическое отделение процессорного модуля от устройств хранения программ и данных. Принципы Принцип двоичного кодирования Согласно этому принципу, вся информация, поступающая в ЭВМ, кодируется с помощью двоичных сигналов (двоичных цифр, битов) и разделяется на единицы, называемые словами. Принцип однородности памяти Программы и данные хранятся в одной и той же памяти. Поэтому ЭВМ не различает, что хранится в данной ячейке памяти — число, текст или команда. Над командами можно выполнять такие же действия, как и над данными. Принцип адресуемости памяти Структурно основная память состоит из пронумерованных ячеек; процессору в произвольный момент времени доступна любая ячейка. Отсюда следует возможность давать имена областям памяти, так, чтобы к хранящимся в них значениям можно было бы впоследствии обращаться или менять их в процессе выполнения программы с использованием присвоенных имен.
|
||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 2344; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.217.14.208 (0.009 с.) |