Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Классификация тормозов подвижного состава и их основные свойства

Поиск

5 типов тормозов: стояночные, пневматические, электропневматические, электрические, электромагнитные (магнито-рельсовые).

Стояночными тормозами (ручные, автоматические) оборудованы локомотивы, пассажирские вагоны и примерно 10% грузовых вагонов.

Пневматическими тормозами (неавтоматические прямодействующие, автоматические: прямодействующие и непрямодействующие) оснащен весь подвижной состав железных дорог с использованием сжатого воздуха давлением до 9 кгс/см2 на локомотивах и 5—6,5 кгс/см2 на вагонах. Основным тормозом на сегодняшний день является – пневматический.

Электропневматическими тормозами (неавтоматические прямодействующие, автоматические) оборудованы пассажирские локомотивы и вагоны, электро- и дизель-поезда.

Стояночные, пневматические и электропневматические тормоза относятся к разряду фрикционных тормозов, у которых сила трения создается непосредственно на поверхности колеса, либо на специальных дисках, жестко связанных с колесными парами

Электрическими тормозами (реостатные, рекуперативные, рекуперативно-реостатные), которые часто называют динамическими, или реверсивными, вследствие перевода тяговых двигателей в режим электрических генераторов, оборудованы отдельные серии электровозов, тепловозов и электропоездов. Электрические тормоза бывают рекуперативными - вырабатываемая тяговыми двигателями энергия отдается обратно в сеть, реостатными - вырабатываемая тяговыми двигателями энергия гасится на тормозных резисторах и рекуперативно-реостатными - при высоких скоростях используется рекуперативный тормоз, а при низких реостатный (подробное изучение принципа действия и основных свойств электрических тормозов предусмотрено курсом "Электрические передачи локомотивов").

Одной из разновидностей электромагнитных тормозов – магнитно-рельсовые тормоза (так же есть виды фрикционные магнито-рельсовые и на вихревых токах: рельсовые и дисковые). Оборудованы высокоскоростные поезда ЭР-200 и вагоны трамвайного парка. На высокоскоростном подвижном составе данные тормоза применяются как дополнительные к электропневматическим и электрическим тормозам. В данном типе тормозов тормозное усилие создается с помощью тормозных башмаков с электромагнитами.

 

Классификация, конструкция и принцип действия тормозных цилиндров

Тормозные цилиндры являются силовыми органами тормозной системы, предназначенными для передачи через поршень и шток усилия от давления сжатого воздуха на рычажную передачу, посредством которой осуществляется прижатие тормозных колодок к колесам.

Конструктивно большинство тормозных цилиндров имеют литой чугунный корпус, в котором расположен поршень со штоком и отпускной пружиной. Выпущена первая партия штампованных цилиндров № 586. Применяются цилиндры с жестко закрепленным в поршне штоком и с самоустанавливающимся, шарнирно соединенным поршнем.

По способу расположения на подвижном составе различают тормозные цилиндры горизонтальные и вертикальные.

По конструктивным признакам чугунные тормозные цилиндры подразделяются на три группы:

I — со штоком, жестко связанным с поршнем посредством пальца;

II — с самоустанавливающимся штоком, шарнирно связанным с поршнем посредством пальца;

III — со штоком, жестко связанным с поршнем посредством пальца и с привалочным фланцем на задней крышке для крепления пассажирских воздухораспределителей усл. №292-001).

Выход штока ТЦ является важным эксплуатационным показателем состояния тормоза. Инструкция по эксплуатации тормозов подвижного состава железных дорог ЦТ-ЦВ-ЦЛ-ВНИИЖТ/277 для электровозов и тепловозов (кроме тепловозов ТЭП-60 и ТЭП-70) устанавливает нормы нижнего и вехнего пределов выхода штока ТЦ 75 - 100 мм, а максимально допустимый в эксплуатации - 125 мм. Для грузовых вагонов с чугунными колодками при первой ступени торможения 40 - 100 мм, а максимально допустимый в эксплуатации - 175 мм; для грузовых вагонов с композиционными колодками соответственно 40 - 80 мм и 130 мм. Для пассажирских вагонов с чугунными и композиционными колодками при первой ступени торможения 80 - 120 мм, максимально допустимый в эксплуатации - 180 мм. (для пассажирских вагонов с композиционными колодками выход штока ТЦ указан с учетом длины хомута, установленного на штоке, а максимально допустимый выход штока ТЦ в эксплуатации для всех вагонов указан при отсутствии на вагоне авторегулятора рычажной передачи).

 

Конструкция и принцип действия воздухораспределителя усл.№292-001

Воздухораспределитель состоит из магистральной части, крышки и ускорителя экстренного торможения. В корпус запрессованы три бронзовые втулки: золотниковая, поршневая и втулка переключательной пробки. Магистральный поршень, отштампованный из латуни, уплотнен кольцом из специальной бронзы.

Магистральный поршень образует две камеры: магистральную М и золотниковую ЗК. В хвостовике поршня имеются две выемки, в которых расположен отсекательный золотник с осевым зазором около 0,3 мм и главный золотник с зазором 7,5 мм (холостой ход). Главный золотник прижат к зеркалу втулки пружиной, смещенной относительно продольной оси золотника на 4,5 мм и расположенной над магистральным каналом.

Зарядка. Воздух из тормозной магистрали по каналу в корпусе магистральной части воздухораспределителя и каналу в корпусе крышки и далее через фильтр поступает в магистральную камеру. Из этой камеры через три отверстия воздух проходит в золотниковую камеру. Кроме того, из магистральной камеры воздух поступает под отсекательный золотник.

Одновременно воздух из магистрали проходит под ускорительный поршень, отжимает его от седла, через дроссельное отверстие поступает в камеру над ускорительным поршнем и далее по каналам и выемке в переключательной пробке под главный золотник.

Разрядка (мягкость). При понижении давления в магистрали с 0,5 до 0,45 МПа за 75 с и более воздух успевает уходить из ЗК и запасного резервуара в магистраль теми же каналами, что и при зарядке, но в обратном направлении, не перемещая магистрального поршня.

Служебное торможение. При снижении давления в тормозной магистрали краном машиниста на 0,03 МПа и более темпом служебного торможения магистральный поршень под действием избыточного давления со стороны ЗК переместится вправо вместе с отсекательным золотником на величину холостого хода 7,5 мм, не передвигая главный золотник. При этом произойдет разобщение магистрали с ЗК, так как отверстия будут перекрыты кольцом магистрального поршня. Одновременно магистраль каналами, отверстием в главном золотнике, выемкой в отсекательном золотнике, каналами сообщится с КДР. После этого поршень вместе с отсекательным золотником сдвинется обратно на величину холостого хода около 7 мм, не перемещая главного золотника, и отсекательный золотник своей кромкой закроет канал, т.е. произойдет перекрыша.

Экстренное торможение. При понижении давления в магистрали темпом 0,08 МПа и более за 1 с магистральный поршень под действием избыточного давления со стороны ЗК быстро перемещается на 24 мм вместе с золотниками в крайнее правое положение, сжимая пружину буферного стержня, и прижимается к прокладке.

Экстренная дополнительная разрядка одного прибора вызывает срабатывание и дополнительную разрядку следующего воздухораспределителя, и так до хвоста поезда, способствуя более быстрому распространению торможения по поезду со скоростью 190 м/с.

Отпуск. При повышении давления в магистрали до величины 0,01 – 0,02 МПа большей, чем давление в ЗК и запасном резервуаре, магистральный поршень с золотниками перемещается влево. Воздух из тормозного цилиндра по каналу перемещается к втулке переключательного крана через отверстие, выемку и отверстие – в канал золотниковой втулки и через выемку в золотнике и канал – в атмосферу.

 



Поделиться:


Последнее изменение этой страницы: 2016-07-16; просмотров: 729; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.117.93.183 (0.011 с.)