Потери энергии при движении воздуха по ступени осевого компрессора 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Потери энергии при движении воздуха по ступени осевого компрессора



Работа, получаемая колесом компрессора, передается потоку воздуха не вся. При движении воздуха по каналам компрессора неизбежно возникают потери на трение, связан­ные с движением воздуха. Эти потери называются гидрав­лическими. На преодоление потерь и затрачивается часть работы (энергии), передаваемой от рабочего колеса потоку воздуха.

Гидравлические потери можно разделить на три группы:

- профильные;

- потери на образование вихрей;

- потери на перетекание воздуха.

Профильные потери - это потери энергии в приграничном слое.

Опыт показывает, что у поверхности любого тела, обте­каемого потоком воздуха, образуется тонкий пограничный слой воздуха, в котором происходит торможение воздушного потока за счет сил трения между частицами воздуха и поверхностью тела.

Рассмотрим пограничный слой, образующийся у лопатки осевого компрессора при обтекании ее потоком воздуха (рис. 8).

Пограничный слой у стенки имеет слоистое строение: частицы воздуха движутся слоями, один слой над другим. Частицы воздуха, находящиеся непосредственно у поверхности лопатки, движутся медленно; чем дальше они находятся от поверхности лопатки, тем движутся быстрее. Такой пограничный слой называется ламинарным, он неустойчив, легко нарушается, толщина его небольшая. Этот слой создает небольшие потери на трение. В какой-то точке поверхности лопатки плавное движение частиц воздуха переходит в беспорядочное вихревое движение, слои воздуха пограничном слое нарушается. Воздух перестает двигаться слоями. Поступательное движение частиц воздуха переходит и беспорядочное вихревое движение, слои воздуха перемеши­ваются. Точка 3называется точкой перехода. Такой погра­ничный слой, где частицы воздуха имеют вихревое движение, называется турбулентным, он очень устой­чив, имеет большую толщину, чем ламинарный пограничный слой, и поэтому дает большие потери на трение. Толщина пограничного слоя постепенно увеличивается: к хвостику лопатки она доходит до 2 - 4 мм.

Рис. 8. Пограничный слой воздуха

(1 – слоистый неустойчивый, 2 – вихревой устойчивый, 3 – точка перехода пограничного слоя из неустойчивого в устойчивый, 4 – вихревой след за профилем (спутная струя)).

Профильные потери зависят от формы профиля лопаток, поэтому и называются профильными. Кроме этого, профиль­ные потери зависят от качества обработки поверхности лопа­ток. Естественно, чем хуже обработана поверхность лопа­ток, тем 'больше будут профильные потери.

Пограничный слой воздуха образуется на всех стенках канала, по которому течет воздух.

Вторая группа потерь энергии при движении потока воздуха - это образование вихрей. За лопаткой образуется вихревой след - так называемая спутная струя (рис. 8). В природе вихревой след можно наблюдать в виде водяных вихрей, образующихся за неподвижными предметами, находящимися в реке, например за устоями мостов, за камнями, за скалами и т. д. Опустите руку в текущую воду, и вы увидите, что от руки образуется вихревой след на поверхности воды.

Рис. 9. Образование парного вихря

При движении воздуха между лопатками образуется повы­шенное давление на “корытце” (вогнутой стороне лопатки) и пониженное давление (разрежение) на ее спинке. Разность этих давлений заставляет пограничный слой сдвигаться от корытца лопатки А кспинке лопатки Б (рис. 9). Это тече­ние пограничного слоя складывается с течением основного потока воздуха и образует “парный вихрь” - два вихря, вра­щающиеся навстречу друг другу.

Вихревые зоны образуются и при отрыве струи воздуха от лопаток, как это изображено на рис. 10.

Рис. 10. Образование вихревых зон при отрыве струи воздуха от лопатки

Третью группу потерь анергии при движении воздуха составляют потери на перетекание воздуха из обла­сти повышенного давления в область пониженного давления.

В выполненных конструкциях осевых нагнетателей между торцами лопаток рабочего колеса и внутренней поверхностью корпуса нагнетателя имеется радиальный зазор 0,5 - 2 мм.

Под действием повышенного давления на корытце и пониженного давления на спинке лопатки возникает перетекание воздуха по зазору (рис. 11). Движение лопатки относи­тельно корпуса при враще­нии рабочего колеса способ­ствует этому перетеканию воздуха.

Перетекание воздуха по радиальному зазору умень­шает эффективность сжатия воздуха лопатками и сни­жает степень сжатия воздуха в каждой ступени.

С увеличением скорости течения воздуха по компрес­сору гидравлические потери увеличиваются.

Рис. 11. Перетекание воздуха по радиальному зазору в колесе осевого компрессора

Для уменьшения гидрав­лических потерь поверхности лопаток тщательно полируют, лопаткам придают хорошо обтекаемую аэродинамическую форму и стараются уменьшить перетекание воздуха путем специальных уплотнений между ступенями осевого компрессора.

 

ЦЕНТРОБЕЖНЫЙ КОМПРЕССОР

Рассмотрим устройство центробежного компрессора (рис. 13, 14). В литом корпусе на специальных подшипниках вращается колесо. Перед колесом укреплены неподвижные направляющие аппараты, которые создают предварительную накрутку потока воздуха перед входом в колесо - отклоняют поток воздуха от осевого направления движения, при этом уменьшается скорость воздуха относительно колеса. Назна­чение закрутки воздуха -увеличить быстроходность колеса (повысить число оборотов).

Рис. 13. Принципиальное устройство центробежного компрессора

Колесо состоит из крыльчатки и заборных лопаток.

Крыльчатка представляет собой диск, имеющий лопатки (идущие по радиусу) с одной или обеих сторон диска.

Если лопатки имеются на одной стороне, то такое колесо называется колесом с односторонним входом воздуха. Если лопатки имеются с. обеих сторон колеса, то оно назы­вается колесом с двухсторонним входом воздуха.

Чаще всего колесо делают с двухсторонним входом воздуха для увеличения количества воздуха, прогоняемого компрессором в одну секунду,

К крыльчатке наглухо крепятся заборные стальные ло­патки, загнутые в сторону вращения колеса, для обеспечения безударного входа воздуха в колесо.

Воздух из колеса попадает в диффузор, а из него через коленообразныепатрубки поступает в камеры сгорания.

Рис. 14. Детали колеса компрессора

Главная рабочая часть центробежного компрессора - ко­лесо. Оно получает энергию от газовой турбины и передает ее воздуху. За счет этой энергии повышается давление воз­духа о колесе и увеличивается абсолютная скорость его дви­жения.

Часть энергии, передаваемая колесом воздуху, тратится на преодоление гидравлических сопротивлений, возникаю­щих при движении воздуха.

Рассмотрим подробнее движение воздуха по колесу. Поток воздуха закручивается неподвижным направляю­щим аппаратом и подходит к колесу со скоростью с1 (рис. 15). Треугольник скоростей на входе в колесо составляют:

с1 - абсолютная скорость входа воздуха на лопатки;

- и - окружная скорость вращения лопатки (знак минус показывает, что вращение колеса происходит навстречу дви­жения частиц воздуха);

w1 - скорость движения частиц воздуха относительна лопатки.

Колесо вращается с очень большими оборотами: 10000—15000 в минуту (160—250 оборотов в секунду). Окружная скорость на ободе колеса достигает 450— 500 м/сек и более.

Лопатки колеса, захватив частицы воздуха, увлекают их и заставляют вращаться с такой же большой скоростью.

Обозначим через т массу частички воздуха и через r радиус, где находится эта частичка.

Величина радиуса будет все время увеличиваться при движении частички от входа вколесо до выхода из него.

Центробежная сила, отбрасывающая частичку воздуха к краю колеса, определяется по известному из физики уравнению:

 
 

 

 


Значит, чем дальше будет частица воздуха удаляться от оси вращения колеса, тем больше будет ее окружная скорость и, следовательно, больше будет центробежная сила, дей­ствующая на частицу воздуха и сжимающая ее. Масса же воздуха состоит из бесчисленного количества этих элемен­тарных частиц.

 

Рис. 15. Треугольники скоростей воздуха на входе и выходе колеса

Таким образом, воздух, прогоняемый колесом, сжимается, кроме того, увеличивается абсолютная скорость его дви­жений.

Треугольник скоростей на выходе из колеса будет состав­лен скоростями:

ск - абсолютная окружная скорость воздуха на выходе из колеса;

uk - окружная скорость лопатки на краю колеса;

wk - относительная скорость выхода воздуха из колеса.

Вектор относительной скорости отклонен против враще­ния колеса, так как воздух отстает от вращающегося колеса. Величина отставания воздушного потока на выходе из колеса зависит главным образом от числа и длины лопаток колеса. Чем больше лопаток, тем труднее частице воздуха отклониться от радиального направления. Но чем больше лопаток, тем меньше канал для прохода воздуха и тем труд­нее воздуху проходить по этому каналу.

На выходе из колеса воздух имеет давление 2,2 - 2,5 кг/см и абсолютную скорость порядка 450 - 550 м/сек, полученные за счет энергии, сообщенной воздуху колесом. С такими параметрами воздух поступает в диффузор. Диффузор пред­ставляет расширяющийся канал, в котором происходит уменьшение скорости потока воздуха. Он служит для преоб­разования скоростной энергии в потенциальную, т. е. в энер­гию давления воздуха.

Рис. 16. Лопаточный диффузор

Диффузоры делятся на два типа: щелевые и лопаточные. Конструктивно они выполняются вместе (рис. 16, 17).

Щелевой диффузор представляет собой кольцевую щель между колесом и лопаточным диффузором; вели­чина щели колеблется (в различных ТРД) в пределах 12 - 30 мм.

В щелевом диффузоре происходит некоторое выравнива­ние скоростей воздушного потока, (что улучшает устойчивость работы компрессора) и понижение скорости движения воз­духа.

Рис. 17. Схема щелевого и лопаточного диффузоров

Лопаточный диффузор.представляет решетку из лопаток, расположенных по окружности.

Между лопатками образуются расширяющиеся каналы.

Установка лопаток сокращает путь частиц воздуха, что уменьшает потери на трение. При движении воздуха по рас­ширяющемуся каналу лопаточного диффузора уменьшается скорость и повышается давление воздуха (так же как в спрямляющем аппарате осевого компрессора).

Параметры воздуха (с, р, Т) в элементах центробежного компрессора изменяются следующим образом (рис. 18). В неподвижном направляющем аппарате скорость воздуха увеличивается, давление и температура падают - участок а - 1.

В колесе за счет затраты энергии происходят сжатие воздуха и увеличение скорости его движения; температура воз­духа повышается как за счет сжатия, так и за счет тепла тре­ния (сечение вв).

Наконец в диффузоре и коленообразных патрубках за счет уменьшения скорости потока воздуха его давление и тем­пература увеличиваются (сечение 2 - 2).

Рис. 18. Изменение параметров воздуха в элементах центробежного компрессора

Примерные величины давления, температуры и скорости воздушного потока и элементах центробежного компрессора показаны на рис. 18.

 



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 570; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 54.165.248.212 (0.034 с.)