Условия работы лопатки колеса 


Мы поможем в написании ваших работ!



ЗНАЕТЕ ЛИ ВЫ?

Условия работы лопатки колеса

Поиск

Лопатки колеса турбины работают в очень тяжелых успе­ниях.

Обычно турбины турбореактивных двигателей имеют большую скорость вращения - на некоторых двигателях она превышает 15000 об/мин.

B результате вращения в каждой лопатке возникает центробежная сила, которая стремится вырвать лопатку из диска (рис. 37). Величина цен­тробежной силы, действующей на каждую лопатку, достигает 10000- 12000 кг.

Кроме этой силы, на каж­дую лопатку действует окруж­ное усилие (40—50 кг), стремя­щееся изогнуть лопатку в сто­рону вращения, и осевое усилие (15—25 кг), стремящееся изо­гнуть лопатку по движению по­тока газов.

Лопатка колеса двигается в потоке газа, вытекающего из соплового аппарата. В связи с этим она испытывает перемен­ные нагрузки от струек газа. Так, когда лопатка колеса на­ходится против канала, то на нее действуют полное давление газа и вся величина скоростной энергии газа; когда лопатка колеса проходит за лопаткой соплового аппарата, то на нее действуют меньшее давление и скорость.

Эти изменения давления и скорости вызывают колеба­ния лопатки и дополнительные напряжения в ней.

Так как лопатка работает в потоке горячих газов, то к материалу, из которого она изготовлена, предъявляется требование жаропрочности, т. е. способности выдерживать длительное время нагрузки при высоких температурах.

Рис. 36. Схема двухступенчатой газовой турбины и примерное изменение параметров газа в ее элементах Рис. 37. Нагрузки на лопатку

 

Если нагреть железо до красного каления, го оно стано­вится мягким, пластичным — хорошо куется. Если бы изго­товить лопатки турбины из железа, то они от действия тем­пературы и нагрузок быстро бы деформировались и разру­шились.

Создание жаропрочных сплавов — дело очень трудное. Долгое время не могли создать надежно работающей газо­вой турбины из-за отсутствий материала для лопаток и камер сгорания.

Усилиями советских ученых и производственников были созданы жаропрочные сплавы, из которых изготовлены лопатки газовых турбин, надежно работающие в течение сотен часов.

При высокой температуре под нагрузкой у металлов осо­бенно резко проявляется свойство ползучести.

Ползучесть — это появление остаточной деформа­ции в металлической детали под действием нагрузки.

Если на стержень (рис. 38) подвесить груз и длительное время стержень нагревать, то он удлинится. После снятия груза и охлаждения стержня его длина оказывается не рав­ной исходной длине — она будет несколько больше. Вели­чина, на которую стержень вытянулся, и называется ползу­честью.

Рис. 38. Ползучесть материала.

Ползучесть незначительна при обычной температуре. Но при длительном пребывании материала при высокой тем­пературе под нагрузкой она может достичь значительной величины.

При работе турбины лопатки нагреваются до светло-красного каления (850—900° С) и растягиваются центро­бежной силой, при этом они ползут (удлиняются), и зазор между торцом лопаток и корпусом турбины уменьшается. Поэтому в эксплуатации через каждые 25—50 часов работы двигателя проверяют величину зазора между торцами лопа­ток и корпусом турбины, чтобы убедиться, что зазор есть и обеспечивает безопасную работу турбины. Наконец, материал лопаток не должен коррозировать ни в газовом потоке, ни при атмосферных условиях {когда двигатель не работает).

ПОТЕРИ В ГАЗОВОЙ ТУРБИНЕ

Нет, и не может быть ни одного типа двигателя, в кото­ром преобразование энергии в механическую работу про­исходило бы без потерь.

В газовой турбине имеют место следующие потери энергии:

— гидравлические;

— тепловые;

— механические.

Гидравлические потери возникают при дви­жении потока газа по каналам соплового аппарата и колеса. Они складываются из потерь на трение газов о стенки лопа­ток (профильные потери), на образование вихрей и на перетекание газа из области повышенного давления в область пониженного давления. С этими потерями мы уже познакомились, когда рассматривали потери в ступени осевого компрессора.

Но не весь поток газов, вытекающий из соплового аппа­рата, попадает на лопатки колеса. Часть газов протекает мимо лопаток по радиальному зазору и работы не совер­шает. Это увеличивает потери в турбине.

Для обеспечения надежной и длительной работы тур­бины почти во всех турбореактивных двигателях приме­няется охлаждение воздухом соплового аппарата, диска турбины и иногда лопаток колеса. При этом воздух уносит часть тепла; это будут тепловые потери.

Перечисленные потери энергии в турбине составляют 8—12% от работы расширения газов.

Газы, покидающие турбину, обладают большой скоростью (с4 = 400 л/сек). Для турбины это — потерянная энергия. В ТРД газы после турбины подводятся к реактивному насадку, где дополнительно разгоняются и создают, вытекая в атмосферу, реактивную тягу. Поэтому потери с выходной скоростью относятся к потерям турбины условно.

Общий коэффициент полезного действия одноступенча­той турбины равен 0,72—0,76.

Механические потери — это потери на трение в подшипниках турбины, они невелики и составляют около 1% от мощности турбины. Но этот 1% составляет в рас­смотренном нами случае около 140 л.с.

ИСТЕЧЕНИЕ РЕАКТИВНОЙ СТРУИ

РЕАКТИВНЫЙ НАСАДОК

Газы, покидающие газовую турбину, имеют большой запас потенциальной энергии. Так, давление газов за тур­биной равно 1,5—1,8 кг/см2, атемпература 600—700° С.

Поток горячих газов подводится по выхлопной трубе к реактивному насадку, в котором часть энергии газов используется на создание реактивной тяги.

Реактивный насадок преобразует давление и температуру протекающего по нему газового потока в скорость увеличивает скорость истечения газового потока.

Сила воздействия вытекающего газового потока на двигатель и есть реактивная тяга двигателя.

В зависимости от типа самолета между выхлопной тру­бой и реактивным насадком может устанавливаться удли­нительная труба.

На бомбардировщиках длина ее достигает нескольких метров.

Удлинительная труба сваривается из листов жаростой­кого сплава и покрывается тепловой изоляцией для умень­шения потерь тепла газами в окружающую среду и предо­хранения от нагрева деталей самолета, расположенных вблизи турбины.

Для уменьшения потерь при движении газового поток; по удлинительной трубе она делается расширяющейся. Ско­рость течения газа по расширяющемуся каналу умень­шается, а это приводит к уменьшению потерь на трение стенки трубы.

Реактивный насадок (его часто называют реактивным соплом) представляет коническую трубу со специально подобранной для данного двигателя площадью вы­ходного отверстия.

Изменение площади выходного отверстия изменяет тягу двигателя (так как при этом изменяется скорость истечения газов). На одном из выполненных ТРД уменьшение диа­метра реактивного насадка на 1 мм уменьшает тягу двига­теля примерно на 15 кг.

Скорость истечения газов из реактивного насадка тем больше, чем больше давление и температура газов за тур­биной.

Изменение параметров газа в выхлопной трубе и реак­тивном насадке показано на рис. 39. При движении газа по выхлопной трубе скорость его уменьшается (за счет увели­чения площади сечения трубы), а температура и давление немного увеличиваются.

 

Рис. 39. Изменение параметров газа в выхлопной трубе и реактивном насадке

И только в реактивном насадке за счет падения температуры и давления резко увеличивается скорость истечения, достигая на выходе 550—600 м[сек.

При полном расширении давление газов на выходе из насадка равно давлению окружающей среды. Обычно же давление на выходе Р5немного больше давления окружаю­щей среды, так какгаз в реактивном насадке расширяется не полностью.

Площадь выходного сечения реактивного насадка оказы­вает значительное влияние на работу всего двигателя и на величину развиваемой силы тяги. Поэтому на реактивных двигателях, имеющих форсаж, устанавливают реактивный насадок с регулируемой площадью выходного сечения.

ФОРСИРОВАНИЕ ТЯГИ ТРД

Форсирование тяги — это кратковременное уве­личение тяги данного двигателя по сравнению с расчетной (номинальной).

Повышение тяги необходимо при взлете и в воздушном бою, где нужно быстро догнать и атаковать противника или выйти из зоны огня зенитной артиллерии.

Известны следующие способы форсирования:

1. Повышение температуры газов перед турбиной.

2. Дополнительное сжигание топлива за турбиной.

3. Охлаждение воздуха, сжимаемого в компрессоре.

Рассмотрим эти способы.

Повышение температуры газов перед турбиной увеличивает работоспособность газов, как следствие, мощность, развиваемую турбиной.

Работа расширения 1 кг газов в турбине определяется по уравнению:

 
 

 

 


Из уравнения видно, что увеличение температуры газов перед турбиной Т3 увеличивает работу расширения, совер­шаемую газом в турбине.

Увеличение мощности турбины увеличивает число оборо­тов турбины и компрессора и, как результат этого, увели­чивается секундный расход воздуха.

Увеличение температуры Т3увеличивает температуру и перед реактивным насадком, что в свою очередь увеличи­вает скорость истечения газов.

Увеличение же секундного расхода воздуха и скорости истечения газов увеличивает тягу двигателя.

Надо, однако, сказать, что увеличение температуры газов перед турбиной ограничено жаропрочностью мате­риала лопаток (для имеющихся сплавов температура газов не должна превышать 875—900° С), а повышение числа обо­ротов сверх 4—8% от расчетных (номинальных) недопу­стимо из-за возможности обрыва лопаток турбины.

Наконец, повышение температуры Т3 увеличивает удель­ный расход топлива.

Второй способ форсирования ТРД — это дополнитель­ное сжигание топлива между турбиной и реактивным насад­ком в форсажной камере.

Распиливание топлива производится специальными фор­сунками, устанавливаемыми в форсажной камере.

Для сжигания топлива используется кислород, содер­жащийся в газах, протекающих через турбину; при сжигании топлива увеличивается температура газов перед реак-тивным насадком, что повышает скорость истечения газов и, следовательно, тягу двигателя.

Преимущество форсажной камеры состоит в том, что она дает возможность кратковременно значительно увеличить тягу двигателя без увеличения температуры газов перед турбиной и без увеличения лобовой площади двигателя.

По мере роста скорости полета форсажные камеры становятся все более эффективным устройством для кратковре­менного увеличения тяги и широко применяются на совре­менных ТРД.

Недостатком форсажных камер является некоторое усложнение конструкции двигателя и увеличение его веса. При форсировании тяги указанным выше способом уве­личивается удельный расход топлива. Например, при увеличении температуры перед реактивным насадком на 70% удельный расход топлива увеличивается почти на 65%, а удельная тяга — только на 30%.

Влияние температуры при форсировании ТФОРС на удель­ный расход топлива и удельную тягу показано на рис. 40.

При неработающей форсажной камере ее детали создают дополнительное сопротивление течению газа в двигателе, что незначительно уменьшает тягу двигателя и ухудшает его экономичность по сравнению с двигателем без форсажной камеры.

Третий способ форсирования — это охлаждение воздуха, сжимаемого в компрессоре, охлаждающей жидкостью, впрыскиваемой в поток воздуха. Охлаждающие жидкости вода, спирт, их смеси, аммиак и т. д.— охлаждают воздух, отнимая от него тепло на свое испарение.

За счет охлаждения воздуха уменьшается работа сжатия, расходуемая на каждый килограмм воздуха, и понижается температура конца сжатия.

Рис. 40. Влияние температуры форсирования перед реактивным насадком на Ср и РУД

Так как количество сжимаемого воздуха остается постоян­ным (GСЕК = пост.), то, затрачивая ту же мощность тур­бины, компрессор будет сжимать воздух до большего дав­ления.

Перепад давления, срабатываемый в турбине, остается постоянным; перепад же давления, срабатываемый вреак­тивном насадке, увеличивается, а это приводит к увеличе­нию скорости истечения газов и, следовательно, тяги дви­гателя.

Чаще всего для охлаждения воздуха, сжимаемого в компрессоре, в поток воздуха на всасывании впрыскивают воду.

Однако применение этого простого способа форсирования требует больших расходов воды.

 

ХАРАКТЕРИСТИКИ ТРД

Тяга, удельный расход топлива и другие параметры тур­бореактивного двигателя зависят от атмосферных условий, от скорости и высоты полета, а также от режима работы дви­гателя.

Изменение тяги и удельного расхода двигателя в зависимости от числа оборотов называется характеристикой ТРД по числу оборотов, в зависимости от высоты полета — высотной характеристикой и от скорости полета — скоростной характеристикой.

 



Поделиться:


Последнее изменение этой страницы: 2016-07-14; просмотров: 467; Нарушение авторского права страницы; Мы поможем в написании вашей работы!

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.221.161.43 (0.011 с.)