Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: АрхеологияБиология Генетика География Информатика История Логика Маркетинг Математика Менеджмент Механика Педагогика Религия Социология Технологии Физика Философия Финансы Химия Экология ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Закон минимума и его использование в земледелии↑ Стр 1 из 5Следующая ⇒ Содержание книги Похожие статьи вашей тематики
Поиск на нашем сайте
Факторы жизни растений Растения в течение всей своей жизни постоянно находятся во взаимодействии с внешней средой. Требования растений к факторам жизни определяются наследственностью растений, и они различны не только для каждого вида, но и для каждого сорта той или иной культуры. Это связанно с тем, что каждому растению нужны конкретные, изменяющиеся во времени количества лучистой энергии, температура среды, вода, разнообразные растворенные химические элементы, газовый состав почвенного и атмосферного воздуха, свойства среды обитания.
Факторы жизни растений подразделяются на космические и земные. Рассмотрим влияние основных факторов и условий на рост и развитие растений. Свет Основным источником света для растений является солнечная радиация. Хотя этот источник находится вне влияния человека, степень использования световой энергии солнца для фотосинтеза зависит от уровня агротехники: способов посева (направление рядков с севера на юг или с востока на запад), дифференцированных норм высева, обработки почвы и др. Свет, т. е. оптическое излучение солнца в виде электромагнитных волн определенной длины, включающее видимое человеческим глазом инфракрасное и ультрафиолетовое излучение, оказывает большое влияние на рост и развитие растений. Прежде всего, свет – источник энергии для фотосинтеза. Помимо этого, свет оказывает прямое влияние на развитие растений. Без него растения не зацветают и не плодоносят. При недостатке света зерновые, например, плохо кустятся, стебли вытягиваются, растения полегают, зерно получается щуплым, с низким содержанием белка. Свет влияет на качество продукции и других растений: сахарная свекла при хорошем освещении накапливает больше сахара, картофель – крахмала, подсолнечник – жира. Растения реагируют на смену дня и ночи, на изменение интенсивности освещения. Эту реакцию называют фотопериодизмом. Для нормального развития одних растений нужен длинный световой день, что наблюдается в южных широтах. Так, озимая рожь, овес, пшеница запаздывают с цветением в условиях короткого дня. Другие растения (рис, хлопчатник, сорго, просо, табак) лучше развиваются в широтах с коротким световым днем. В практике земледелия используют приемы, позволяющие улучшить освещенность растений. К ним относятся правильное ориентирование рядов посевов по отношению к странам света. Например, посев зерновых рядками в меридиональном направлении по сравнению с широтным дает прибавку урожая 0,2 – 0,3 т/га за счет лучшего освещения растений утром и вечером и затенения их друг другом в жаркие полуденные часы. Необходимо создать правильную густоту стояния растений при посеве, более равномерно распределять их по площади, уничтожать сорные растения, затеняющие культурные. Своевременное прореживание растений и уничтожение сорняков улучшают освещенность растений. Как правило, более ранние сроки посева и посадки способствуют усилению фотосинтетической деятельности и повышению урожая. В условиях длительного лета применяют пожнивные и поукосные посевы, позволяющие полнее использовать солнечную радиацию. Тепло Тепло в жизни растений, наряду со светом представляет основной фактор жизни растений и необходимое условие для биологических, химических и физических процессов в почве. Каждое растение на различных фазах и стадиях развития предъявляет определенные, но неодинаковые требования к теплу, изучение которых составляет одну из задач физиологии растений и научного земледелия. Тепло в жизни растений влияет на скорость развития в каждой стадии роста. В задачу земледелия входит также изучение теплового режима почвы и способов его регулирования. Все процессы, происходящие в растении (прорастание семян, рост, плодообразование, фотосинтез), наилучшим образом протекают при определенной оптимальной температуре. При отклонении ее в ту или иную сторону эти процессы тормозятся, что приводит к снижению урожая. Для каждой фазы развития существуют минимальные и максимальные температуры, при которых физиологические процессы останавливаются, и растения даже могут погибнуть. По отношению к теплу растения подразделяют на холодостойкие, семена которых прорастают при температуре почвы 2 – 5 0С, и за весь вегетационный период им нужна сумма активных (более 10 0С) среднесуточных температур воздуха 1200 – 1800 0С, и теплолюбивые, семена которых прорастают при температуре почвы 8 –12 0С и нуждаются в сумме активных среднесуточных температур воздуха 3000 – 4000 0С.
Воздух Воздух в жизни растений (атмосферный и почвенный) необходим как источник кислорода для дыхания растений и почвенных микроорганизмов, а также как источник углерода, который растение усваивает в процессе фотосинтеза. Кроме того, Воздух в жизни растений необходим для микробиологических процессов в почве, в результате которых органическое вещество почвы разлагается аэробными микроорганизмами с образованием растворимых минеральных соединений азота, фосфора, калия и других элементов питания растений. Растения чувствительны к составу почвенного воздуха, в частности к содержанию в нем кислорода. Он, прежде всего, необходим для прорастания семян и потребляется корнями растений. Особенно требовательны к кислороду корнеплоды и клубнеплоды, масличные и бобовые культуры. Менее требовательны – зерновые, некоторые из них снабжают корни кислородом, запасенным в воздухоносных полостях стеблей. Эти полости особенно развиты у риса, который может расти на почве, затопленной водой, а также у кукурузы. Количество и состав почвенного воздуха можно регулировать, изменяя содержание влаги в почве с помощью орошения или осушения, соответствующей обработке почвы (рыхлением или прикатыванием). Внесение органических удобрений (навоза, компостов, торфа) приводит к увеличению концентрации углекислого газа в почве и уменьшению кислорода. В почвах, содержащих много гумуса, формируется благоприятная структура, что улучшает их воздушный режим. Вода Вода в жизни растений и питательные вещества, за исключением углекислоты, поступающей как из почвы, так и из атмосферы, представляют почвенные факторы жизни растений. Поэтому воду и питательные вещества называют элементами плодородия почвы. Вода - незаменимый терморегулятор для растений. Проходя через него, она регулирует температуру растительного организма и повышает его устойчивость к высоким и низким температурам. Вода поддерживает тургор клеток, распределяет по отдельным органам продукты ассимиляции. Период острой потребности растения в воде называется критическим, у зерновых он совпадает с фазой выхода в трубку - колошением, у зернобобовых - цветения, у картофеля - цветения и клубнеобразования. Недостаток влаги в это время резко снижает продуктивность растений. Элементы питания растений В обмене веществ между растениями и окружающей средой важнейшим условием является корневое питание. В состав сухой массы растений входит несколько десятков элементов питания, однако некоторые из них абсолютно необходимы для всех растений. Это макроэлементы – углерод, кислород, водород, азот, фосфор, калий, кальций, магний, железо, сера и микроэлементы – бор, марганец, медь, цинк, молибден, кобальт и др. Первые четыре макроэлемента (углевод, кислород, водород, азот) входят в состав органической массы растений и называют органогенами, остальные – зольными элементами. Азот входит в состав белков, которые являются основой жизни, и влияет главным образом на ростовые процессы. При недостатке азота рост и развитие растений сильно замедляются, растение имеет мало листьев и бледную окраску. Избыток азота значительно увеличивает рост растений, затягивая их созревание. Сера, магний, железо участвуют в окислительных процессах. Сера входит в состав белка, магний – хлорофилла, железо – необходимый элемент при образовании хлорофилла, хотя и не входит в его состав. Обобщение многовекового опыта выращивания сельскохозяйственных культур привело к формированию законов земледелия. Основные законы земледелия В естественных условиях все факторы жизни растений взаимосвязаны и взаимозависимы. Изменение хотя бы одного из них влияет на характер действия на растение всех остальных факторов. В результате длительного — на протяжении нескольких веков — изучения процессов роста и развития растений во взаимодействии с окружающей средой были установлены основные закономерности этого взаимодействия. Знание этих законов, правильное их использование в практике земледелия обеспечивает успешное решение задач по повышению плодородия почвы и урожайности сельскохозяйственных культур. Закон равнозначимости и незаменимости факторов жизни растений. Согласно этому закону для роста и развития растений должен быть обеспечен приток всех факторов жизни растений. Растение может нуждаться как в больших, так и в ничтожно малых количествах факторов, однако отсутствие любого из них ведет к резкому снижению урожая и даже гибели растений. Ни один фактор нельзя заменить другим. Например, недостаток фосфора нельзя заменить избытком азота, а ограниченное поступление света восполнить лучшим обеспечением растений водой и т.д. На практике получить максимально высокий урожай можно только при бесперебойном снабжении растений всеми факторами в оптимальном количестве. Однако в конкретных условиях производства этот закон имеет относительное значение из-за неодинаковых затрат. Закон минимума. Величина урожая определяется фактором, находящимся в минимуме (Ю. Либих). Рост урожая прямо пропорционален увеличению количества фактора, находящегося в минимуме,. Закон возврата. Вещество и энергия, отчужденные из почвы с урожаем, должны быть компенсированы (возвращены в почву) с определенной степенью превышения. Земледелие как отрасль производства материально по своей природе. Урожай как материальная субстанция создается из материальных составных частей - за счет веществ и энергии, получаемых растениями из почвы. Почва - посредник растений в обеспечении их факторами жизни, среда их произрастания. При систематическом отчуждении урожая с полей без компенсации использованных им составных частей почвы и энергии почва разрушается, теряет плодородие. При компенсации выноса веществ и энергии из почвы последняя сохраняет свое плодородие; при компенсации веществ и энергии с определенной степенью превышения происходит улучшение почвы, расширенное воспроизводство ее плодородия. Действие законов проявляется и учитывается в научно-обоснованных системах земледелия. Адаптивно-ландшафтной системой земледелия - использования земли определенной агроэкологической группы, ориентированная на производство продукции экономически и экологически обусловленных количества и качества в соответствии с общественными (рыночными) потребностями, природными и производственными ресурсами, обеспечивающая устойчивость агроландшафта и воспроизводство почвенного плодородия. Соблюдение и выполнение законов земледелия. Действие законов основано на методологии использования системного метода. Ценность системного метода заключается в том, что он позволяет направленно влиять на процессы формирования урожая и плодородие почвы. При этом создается возможность быстро находить технологические решения, исключая одностороннее необоснованное увлечение какими-либо отдельными приемами. 2. Сорная растительность. Сорняки - дикорастущие растения, обитающие на сельскохозяйственных угодьях и снижающие величину и (или) качество продукции. Растения, относящиеся к культурным видам, но не возделываемые на данном поле и засоряющие посевы основной культуры, называются засорителями. Антропохоры - попадают на поля в процессе хозяйственной деятельности человека (с семенным материалом, навозом, уборочными машинами). Большое число сорняков появляется с окружающих естественных территорий, сохранившихся в почве после распашки конкретной площади. Апофиты, некоторые из которых оказываются весьма стойкими на пашне (пырей ползучий, бодяк полевой, хвощ полевой и др.). Сорную растительность подразделяют на несколько групп в зависимости от условий их местообитания. Виды сорняков, предпочитающие постоянно обрабатываемые земли и хорошо приспособившиеся к посевам культуры, составляют группу сорнополевой, или сегетальной, растительности (редька дикая, горчица полевая, куколь обыкновенный, овсюг, василек синий, ромашка непахучая и многие другие). Они формируют травостой. Сорняки, обитающие у жилых и хозяйственных построек, на свалках и производственных отходов, по межам и обочинам дорог относятся к группе мусорной, или рудеральной, растительности. По аналогии нередко выделяют сорняки огородные, луговые, пастбищные и др. В зависимости от реакции культур на сорняки различают уровни засоренности или пороги вредоносности: фитоценотические, критические, экономический, экономической целесообразности. Фитоценотический порог вредоносности (ФПВ) - такое обилие сорняков, при котором они не причиняют культурным посевам вреда. Критический (статистический) порог вредоносности (КПВ) - такое обилие сорняков, которое вызывает статистически недостоверные потери урожая. Борьба с сорняками нецелесообразна. Экономический порог вредоносности (ЭПВ) — то минимальное количество сорняков, полное уничижение которых обеспечивает получение прибавки урожая, окупающей затраты на истребительные мероприятия и уборку дополнительной продукции. Порог экономической целесообразности борьбы с сорняками (ПЭЦБ). Под ним понимают такое обилие сорняков, полное уничтожение которых обеспечивает рентабельность системы истребительных мероприятий не менее 25-40 %. По способу питания: 1.Паразитные сорные растения (гетеротрофы) В зависимости от места их связи с растением-хозяином их делят на 2 биогруппы: корневые - заразиха и стеблевые паразитные сорняки - повилика. 2.К полупаразитным (гемигетеротрофы) относят сорняки, которые не только способны к фотосинтезу, но также используют воду и растворенные в ней минеральные и частично органические вещества из растения-хозяина. 3.Непаразитные сорняки. По преобладающему способу размножения и продолжительности жизни их подразделяют на два подтипа: малоолетние и многолетние. По продолжительности жизни: эфемеры (звездчатка средняя или мокрица), яровые ранние (овсюг, марь белая), яровые поздние (щетинник зеленый, ежовник обыкновенный), зимующие (пастушья сумка, ярутка полевая, василек синий), озимые (костер полевой, ржаной) и двулетние(донник, белена). По способности к семенному и вегетативному размножению выделяют биогруппы: стержнекорневые (полынь, одуванчик), мочковатокорневые (подорожник), ползучие (лютик ползучий), луковичные(лук круглый, огородный), клубневые(чистец болотный), корневищные (пырей, хвощ) и корнеотпрысковые (бодяк, вьюнок). Среди сорных видов повышенное внимание уделяют группе карантинных сорняков, к которым относят особо вредоносные, отсутствующие или ограниченно распространенные на территории страны или отдельного региона сорняки, включенные в перечень карантинных объектов. Способы борьбы с сорными растениями: При планировании мероприятий по борьбе с сорняками за основу берут их видовой состав, биологические особенности, а также состояние сорного растения (всходы, взрослое растение, семена, плоды, корневища, корнеотпрыски и т. д.). Существенное значение имеет степень засоренности полей. Предупредительные мероприятия: 1. Карантинные 2. Организационные: подготовка и хранение органических удобрений, кормов к скармливанию, очистка посевного материала снижение засоренности при орошении, при уборке урожая, уничтожении сорняков на участках несельскохозяйственного использования и др. Истребительные мероприятия: 1. Агротехнические (провокация, механическое и физическое уничтожение, истощение, удушение, высушивание, вымораживание и др.) 2. Биологические (фитоценотические, экологические, аллелопатия, севооборот и др.) 3. Химические 4. Специальные 5. Комплексные Предупредительные мероприятия. Направлены на выявление, локализацию и ликвидацию источников, очагов сорных растений и уничтожение путей их распространения. Истребительные мероприятия. Направлены на уничтожение вегетирующих сорных растений на полях и сельскохозяйственных угодьях, а также органов их генеративного и вегетативного размножения, находящихся в почве для снижения жизнеспособности сорных растений. Они различаются по эффективности. Поэтому рассмотрим преимущественно хорошо разработанные и широко апробированные в земледельческой практике мероприятия. Закон возврата Этот закон открыт Либихом: “Вещество и энергия, отчужденные из почвы с урожаем, должны быть компенсированы (возвращены в почву) с определенной степенью превышения. Тимирязев и Прянишников признавали этот закон одним из величайших приобретений науки. При систематическом отчуждении урожая с поля без компенсации использованных урожаем составных частей почвы и энергии почва разрушается, она теряет плодородие. При компенсации выноса веществ и энергии из почвы она сохраняет свое плодородие, при компенсации веществ и энергии с определенной степенью превышения происходит улучшение почвы. Закон возврата - научная основа воспроизводства почвенного плодородия. Сезонно-промерзающий тип Среднегодовые значения температуры почвы положительные. Температура самого теплого месяца на глубине 0,2 метра колеблется от +20 до +30 °С, длительность промерзания менее 5 мес. Этот тип температурного режима характерен для почв лесной, лесостепной и степной зон. Для сезонно-промерзающего типа температурного режима почв среднетаежной подзоны типичны термоизоплеты подзолистой почвы. Непромерзающий тип Почвы не промерзают. Среднегодовая температура изменяется от +8° до +20°. Этот тип встречается в Приазовско-Предкавказской провинции чернозёмов, а также в субтропиках. Характерным примером непромерзающего типа температурного режима могут служить термоизоплеты почвы зоны влажных субтропических лесов. Почвенный климат леса по сравнению с полем мягче. Зимой он теплее, а летом прохладнее, суточная амплитуда температур сглаживается. Это связано с экранированием почвы кронами деревьев от солнечных лучей, наличием рыхлой лесной подстилки, обладающей низкой теплопроводностью, а также более длительным залеганием снежного покрова под пологом леса. Особенности температурного режима лесных почв оказывают влияние на интенсивность дыхания почвы и минерализации органического вещества. Источник: http://www.activestudy.info/teplovoj-rezhim-pochvy/ © Зооинженерный факультет МСХА Растениево́дство — отрасль сельского хозяйства, занимающаяся возделыванием культурных растений. Растениеводческая продукция используется как источник продуктов питания для населения, как корм в животноводстве, как сырьё во многих отраслях промышленности (особенно в пищевой, текстильной, фармацевтической и парфюмерной промышленности), а также в декоративных (в цветоводстве) и многих других целях[1]. Растениеводство как наука изучает многообразие сортов, гибридов, форм культурных растений, особенности их биологии и наиболее совершенные приёмы их выращивания, которые обеспечивают высокую урожайность и качество при наименьших трудовых и материальных затратах[1]. 1) одна из основных отраслей сельского хозяйства,занимающаяся главным образом возделыванием культурных растений для производства растениеводческойпродукции. Обеспечивает население продуктами питания, животноводство — кормами, многие отраслипромышленности (пищевую, комбикормовую, текстильную, фармацевтическую, парфюмерную и др.) —сырьём растительного происхождения. Тесно связано с Животноводством. Р. включает: Полеводство,Овощеводство,Плодоводство,Виноградарство,Луговодство,Лесоводство, Цветоводство. О динамике иструктуре посевных площадей сельскохозяйственных культур в СССР и за рубежом, валовой продукции Р.,производстве зерна см. Земледелие,Зерновое хозяйство. 2) Наука о культурных растениях и методах их выращивания с целью получения высоких урожаевнаилучшего качества с наименьшими затратами труда и средств (частное земледелие). Р. как учебнуюдисциплину отождествляют с полеводством. Р. входит в комплекс агрономических наук. Тесно связано спочвоведением, общим земледелием, селекцией (См. Селекция)растений, с.-х. метеорологией, физиологией,биохимией, генетикой растений, с.-х. микробиологией, агрофизикой, агрохимией. Основной объект исследования Р. — с.-х. растение (вид, разновидность, сорт, гибрид), его биология,требования к окружающей среде — агроэкологическим условиям. В мире возделывается около 1000 видоврастений (без лекарственных и декоративных), в СССР — около 400 видов и около 5000 сортов и гибридов. Избиологических особенностей отдельных культур Р. изучает: продолжительность вегетационного периода с.-х.растений; ритмы роста и развития; последовательные фазы вегетации и морфогенеза; динамику развитиякорневой системы и ассимиляционной поверхности, накопления сухого вещества, формированияхозяйственно-полезных органов и частей растения; обмен веществ; водный и пищевой режимы;зимостойкость, морозостойкость, засухоустойчивость, солеустойчивость и др. При изучении экологическихособенностей с.-х. культур Р. определяет взаимоотношения между с.-х. растениями и условиями внешнейсреды путём оценки климатических и почвенных факторов с.-х. района. Анализ биологических и экологическихособенностей возделываемых культур, почвенно-климатических и производственных условий с.-х. районовнеобходим для районирования видов, сортов и гибридов с.-х. растений, которое основывается на данныхГосударственной комиссии по сортоиспытанию с.-х. культур и результатах производственных испытаний, атакже для разработки рациональной технологии возделывания растений. Технология возделывания с.-х.культур включает следующие основные приёмы: подбор сорта (гибридов), обладающего в местных почвенно-климатических условиях наиболее ценными биологическими и хозяйственными свойствами; выбор наилучшихпредшественников в севообороте; системы обработки почвы и применения удобрений; подготовку семян кпосеву; посев (сроки, норма высева, глубина заделки семян, способ посева); уход за посевами (обработкапочвы, подкормки, уничтожение сорной растительности, защита растений от вредителей и болезней); уборкуурожая. Рациональная технология возделывания с.-х. культур должна соответствовать почвенно-климатическим условиям зоны, с.-х. района, хозяйства, севооборотного поля; биологическим особенностямвозделываемой культуры, разновидности, сорта; производственным (хозяйственным) ресурсам колхоза илисовхоза. В исследованиях по Р. используют полевой, вегетационный и лабораторный методы. Основные задачи Р.: разработка и совершенствование технологии возделывания сортов интенсивноготипа (способных наиболее продуктивно использовать плодородие почвы, отзывчивых на высокие дозыудобрений и орошение, устойчивых к полеганию, вредителям и болезням, приспособленных кмеханизированному возделыванию, обладающих высоким качеством продукции); работы по исследованиюустойчивости растений к засухе, низким и высоким температурам, засолению почвы; разработка и внедрениеинтегрированных систем защиты растений от болезней и вредителей; создание наиболее эффективных формудобрений; мелиорация земель; дальнейшее изучение физиолого-биохимических и генетических основиммунитета; совершенствование методов программирования высоких урожаев; разработкавысокомеханизированных способов возделывания с.-х. культур. Почва — источник всех питательных веществ, поступающих в растения через корневую систему. К необходимым для растений элементам питания относятся: азот, фосфор, калий, кальций, магний, сера, железо. Важную роль в жизни растений играют микроэлементы бор, марганец, цинк, кобальт, молибден, внесение которых в почву (при их недостатке) может повысить урожай и его качество. Рассмотрим запасы важнейших питательных веществ почвы и источники их пополнения. Азот. Источником его в почве служит прежде всего органическое вещество, в котором заключено 90% азота почвы. Содержание этого элемента в гумусе различных почв измеряется несколькими тоннами на гектар. Запасы гумуса без поступления органических веществ ежегодно уменьшаются в подзолистых почвах на 6—7 ц, в чернозёмах около 1 т с 1 га. Поэтому система удобрения почвы и севооборота должна строиться таким образом, чтобы запасы гумуса в почве не истощались. Наибольшее значение для пополнения доступного растениям почвенного азота имеют процессы аммонификации, при которой азот органического вещества превращается в аммиак, - и нитрификации, при которой аммиак переходит в азотистую, а затем в азотную кислоту и ее соли. Развитию этих процессов способствуют оптимальная температура (20—30° С) и влажность почвы (60—70% полной влагоемкости), аэрация почвы, благоприятная реакция среды. Превращение органических соединений в доступные минеральные формы азота проходит несколько последовательных стадий. Белки и гумусовые вещества под действием ферментов превращаются сначала в аминокислоты и амиды. Микроорганизмы-ам-монификаторы переводят эти соединения в аммиак, аммиачные соли и поглощенный аммоний, уже доступные растениям. Однако в дальнейшем аммиак под влиянием нитрифицирующих бактерий превращается в нитриты, а затем в нитраты, связанные с кальцием, магнием, калием и другими катионами. При благоприятных условиях нитрификации, например в паровом поле на черноземах, может накапливаться от 30 до 50 мг и более нитратного азота на 1 кг почвы, что соответствует 90— 150 кг на 1 гаи больше. В паровом поле на дерново-подзолистых почвах также может аккумулироваться азот нитратов, хотя и в меньшем количестве. Накопленный в почве азот нитратов легкоподвижен. При выпадении большого количества осадков он может опускаться в глубокие горизонты и даже вымываться в грунтовые воды, а также переходить в элементарный азот и улетучиваться в воздух. В засушливых условиях, например в Западной Сибири, нитраты долго (несколько лет) сохраняются в почве. Поэтому процесс разложения органического вещества и образования подвижных форм азота можно регулировать в интересах лучшей обеспеченности этим элементом растений. Другим источником азота в почве служит азот воздуха. Его запасы действительно неисчерпаемы. Однако пути поступления азота воздуха в почву ограничены. Небольшое количество этого элемента (около 4 кг на 1 га) попадает ежегодно с осадками. Накапливают азот в почве и свободноживущие азотфиксаторы (бактерии, некоторые грибы и водоросли). Однако даже при неблагоприятных условиях они могут дать его немного (5—10 кг на 1 га в год). Количество азота в почве необходимо пополнять внесением органических и минеральных (азотных) удобрений, а также мобилизацией атмосферного азота путем посева бобовых растений, главным образом многолетних (клевера, люцерны), или таких однолетних бобовых, которые запахиваются в почву (люпин). Известно, что клевер и люцерна усваивают 150—200 кг азота на 1 га. Примерно одна треть его остается в почве, а остальное количество возвращается в нее в виде навоза. Степень обеспеченности растений азотом почвы нельзя определить по валовому содержанию гумуса или азота. Приближенно содержание этого элемента в доступной форме устанавливают химическими методами, в частности методом Тюрина — Кононовой, которым определяется в почве содержание легкогидролизуемого азота, включающего азот нитратов, аммиака и часть азота органических соединений, легко превращающегося в доступную для растений форму. Для определения обеспеченности почвы азотом этим методом используют шкалу, в которой указано количество гидролизуемого азота в миллиграммах на 100 г почвы. Степень обеспеченности для разных групп культур неодинаковая. Принято считать содержание азота (в мг на 100 г почвы) до 4—6 низким, 6—8 средним, свыше 8 высоким. Однако метод Тюрина—Кононовой пригоден не для всех почв и зон. Потребность в азоте устанавливают по содержанию нитратов в почве осенью и весной, (этот метод подходит для засушливых районов, где не наблюдается сильного вымывания нитратов в глубь почвы, например в Западной Сибири и Северном Казахстане), а также определением нитрификационной способности почв. Наиболее точно о возможной реакции на внесение азотных удобрений на той или иной почве можно судить только на основании полевых опытов. Фосфор. Хотя содержание его в земной коре не превышает 0,1%, значение этого элемента в жизни почвы и растений огромно. Растения аккумулируют фосфор в перегнойном слое почвы, но в то же время и отчуждают с урожаями, особенно с товарной частью его. Фосфор находится в почвах в органических и минеральных соединениях. В черноземах примерно половина, а в дерново-подзолистых почвах одна треть его связана с органическим веществом. Этот фосфор становится доступным растениям лишь после минерализации органического вещества. Минеральные соединения фосфора представлены очень многими формами, преимущественно труднорастворимыми и слабодоступными растениям фосфатами алюминия, железа и трехкальциевыми фосфатами Са3(РО4)2. Легкодоступных соединений фосфора, таких, как растворимые соли кальция [Ca(H2PO4)2]], магния [Mg(H2P04)2], калия (КН2PO4), аммония [(NH4)2HP04 и NH4H2P04] в почве мало. Наблюдается большой разрыв между валовым содержанием фосфора в почве и его количеством, доступным для растений. Например, в дерново-подзолистых суглинистых почвах или в серых лесных общее содержание фосфора (P20s) в пахотном слое составляет 0,04—0,12%, или 1,2—3,6 т на 1 га, а количество доступных растениям форм фосфора в неудобренной фосфатами почве не превышает 0,1—0,2 т на 1 га. О потребности почв в фосфорных удобрениях судят по содержанию доступного растениям фосфора, определяемого теми или другими химическими методами. Все методы рассчитаны на вытеснение фосфора растворителями различной силы и концентрации. Разумеется, химические методы только приближенно дают представление о доступности фосфора растениям. В СССР для определения нуждаемости почв в фосфорных удобрениях применяют метод Кирсанова, основанный на вытеснении фосфора 0,2 н. соляной кислотой (для подзолистых почв), метод Мачигина, основанный на вытеснении фосфора 1%-ным раствором углекислого аммония (для карбонатных почв) и некоторые другие. Используют также методы, в которых применяют последовательно несколько растворителей, что позволяет определить групповой состав фосфатов в почве по степени их растворимости (методы Чирикова, Чанга и Джексона и др.). При установлении обеспеченности почв доступным для растений фосфором пользуются следующей шкалой С учетом обеспеченности почв подвижным фосфором и устанавливают дозы фосфорных удобрений. Калий. Все почвы, за исключением торфяных и рыхлопесчаных, характеризуются высоким валовым содержанием калия (КО) — 1,2—2,5%, или 35—75 т на 1 га пахотного слоя. Преобладающая часть калия связана с глинистыми частицами почвы. Поэтому существует прямая связь между механическим составом почв и содержанием в них калия. Чем больше в почве мелкодисперсных частиц, тем больше в ней калия. В пределах одного почвенного типа в зависимости от механического состава почвы количество калия изменяется следующим образом: песчаные и супесчаные почвы — 1,2%'. легкосуглинистые — 1,77; среднесуглинистые — 2,17; тяжелосуглинистые и глинистые—2,33%. Калий наход
|
|||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 1054; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 3.145.8.2 (0.015 с.) |