![]() Заглавная страница Избранные статьи Случайная статья Познавательные статьи Новые добавления Обратная связь FAQ Написать работу КАТЕГОРИИ: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ТОП 10 на сайте Приготовление дезинфицирующих растворов различной концентрацииТехника нижней прямой подачи мяча. Франко-прусская война (причины и последствия) Организация работы процедурного кабинета Смысловое и механическое запоминание, их место и роль в усвоении знаний Коммуникативные барьеры и пути их преодоления Обработка изделий медицинского назначения многократного применения Образцы текста публицистического стиля Четыре типа изменения баланса Задачи с ответами для Всероссийской олимпиады по праву ![]() Мы поможем в написании ваших работ! ЗНАЕТЕ ЛИ ВЫ?
Влияние общества на человека
Приготовление дезинфицирующих растворов различной концентрации Практические работы по географии для 6 класса Организация работы процедурного кабинета Изменения в неживой природе осенью Уборка процедурного кабинета Сольфеджио. Все правила по сольфеджио Балочные системы. Определение реакций опор и моментов защемления |
Мерзлотный тип температурного режимаСодержание книги Поиск на нашем сайте
Среднегодовая температура почвы на глубине 0—20 см — отрицательная. Сезонное промерзание почвы достигает глубины многолетнемерзлых пород (многолетней мерзлоты). Сумма активных температур не превышает 1 500°. Для мерзлотного типа характерна высокая континентальность почвенного климата — от резко континентального (амплитуда колебания температуры почвы до 40°) до умеренно континентального (с амплитудой до 16°). Примером мерзлотного типа температурного режима являются термоизоплеты (линии, соединяющие точки с одинаковой температурой) криоаридной почвы Якутии. Многолетняя мерзлота является постоянным источником низких температур почвы. Она служит водоупором для талых вод и основным ограничителем мощности корнеобитаемого слоя. В России почвы с мерзлотным типом теплового режима занимают громадные территории — около 10 млн км2. Мерзлотный тип почв наблюдается в ряде провинций евроазиатской полярной и восточно-сибирской мерзлотно-таежной областей. Длительно-сезонно-промерзающий тип В этом типе почв среднегодовая температура положительная. Глубина проникновения отрицательных температур в почву не меньше 1 м, длительность промерзания на глубине 0,2 м составляет более 5 мес. Этот тип температурного режима характерен главным образом для почв таежной зоны. На рисунке изображены термоизоплеты подзолисто-глеевой почвы, типичные для длительно-сезонно-промерзающего типа. Слишком низкая температура почвы делает физически влажную почву физиологически сухой. Особенно этот эффект проявляется при резко континентальном климате и близком залегании многолетней мерзлоты. Почвы с низкой теплопроводностью (глинистые и торфяные) оттаивают медленнее и на меньшую глубину; песчаные и щебнистые — быстрее и на большую глубину. Сезонно-промерзающий тип Среднегодовые значения температуры почвы положительные. Температура самого теплого месяца на глубине 0,2 метра колеблется от +20 до +30 °С, длительность промерзания менее 5 мес. Этот тип температурного режима характерен для почв лесной, лесостепной и степной зон. Для сезонно-промерзающего типа температурного режима почв среднетаежной подзоны типичны термоизоплеты подзолистой почвы. Непромерзающий тип
Почвы не промерзают. Среднегодовая температура изменяется от +8° до +20°. Этот тип встречается в Приазовско-Предкавказской провинции чернозёмов, а также в субтропиках. Характерным примером непромерзающего типа температурного режима могут служить термоизоплеты почвы зоны влажных субтропических лесов. Почвенный климат леса по сравнению с полем мягче. Зимой он теплее, а летом прохладнее, суточная амплитуда температур сглаживается. Это связано с экранированием почвы кронами деревьев от солнечных лучей, наличием рыхлой лесной подстилки, обладающей низкой теплопроводностью, а также более длительным залеганием снежного покрова под пологом леса. Особенности температурного режима лесных почв оказывают влияние на интенсивность дыхания почвы и минерализации органического вещества. Источник: http://www.activestudy.info/teplovoj-rezhim-pochvy/ © Зооинженерный факультет МСХА Растениево́дство — отрасль сельского хозяйства, занимающаяся возделыванием культурных растений. Растениеводческая продукция используется как источник продуктов питания для населения, как корм в животноводстве, как сырьё во многих отраслях промышленности (особенно в пищевой, текстильной, фармацевтической и парфюмерной промышленности), а также в декоративных (в цветоводстве) и многих других целях[1]. Растениеводство как наука изучает многообразие сортов, гибридов, форм культурных растений, особенности их биологии и наиболее совершенные приёмы их выращивания, которые обеспечивают высокую урожайность и качество при наименьших трудовых и материальных затратах[1]. 1) одна из основных отраслей сельского хозяйства,занимающаяся главным образом возделыванием культурных растений для производства растениеводческойпродукции. Обеспечивает население продуктами питания, животноводство — кормами, многие отраслипромышленности (пищевую, комбикормовую, текстильную, фармацевтическую, парфюмерную и др.) —сырьём растительного происхождения. Тесно связано с Животноводством. Р. включает: Полеводство,Овощеводство,Плодоводство,Виноградарство,Луговодство,Лесоводство, Цветоводство. О динамике иструктуре посевных площадей сельскохозяйственных культур в СССР и за рубежом, валовой продукции Р.,производстве зерна см. Земледелие,Зерновое хозяйство.
2) Наука о культурных растениях и методах их выращивания с целью получения высоких урожаевнаилучшего качества с наименьшими затратами труда и средств (частное земледелие). Р. как учебнуюдисциплину отождествляют с полеводством. Р. входит в комплекс агрономических наук. Тесно связано спочвоведением, общим земледелием, селекцией (См. Селекция)растений, с.-х. метеорологией, физиологией,биохимией, генетикой растений, с.-х. микробиологией, агрофизикой, агрохимией. Основной объект исследования Р. — с.-х. растение (вид, разновидность, сорт, гибрид), его биология,требования к окружающей среде — агроэкологическим условиям. В мире возделывается около 1000 видоврастений (без лекарственных и декоративных), в СССР — около 400 видов и около 5000 сортов и гибридов. Избиологических особенностей отдельных культур Р. изучает: продолжительность вегетационного периода с.-х.растений; ритмы роста и развития; последовательные фазы вегетации и морфогенеза; динамику развитиякорневой системы и ассимиляционной поверхности, накопления сухого вещества, формированияхозяйственно-полезных органов и частей растения; обмен веществ; водный и пищевой режимы;зимостойкость, морозостойкость, засухоустойчивость, солеустойчивость и др. При изучении экологическихособенностей с.-х. культур Р. определяет взаимоотношения между с.-х. растениями и условиями внешнейсреды путём оценки климатических и почвенных факторов с.-х. района. Анализ биологических и экологическихособенностей возделываемых культур, почвенно-климатических и производственных условий с.-х. районовнеобходим для районирования видов, сортов и гибридов с.-х. растений, которое основывается на данныхГосударственной комиссии по сортоиспытанию с.-х. культур и результатах производственных испытаний, атакже для разработки рациональной технологии возделывания растений. Технология возделывания с.-х.культур включает следующие основные приёмы: подбор сорта (гибридов), обладающего в местных почвенно-климатических условиях наиболее ценными биологическими и хозяйственными свойствами; выбор наилучшихпредшественников в севообороте; системы обработки почвы и применения удобрений; подготовку семян кпосеву; посев (сроки, норма высева, глубина заделки семян, способ посева); уход за посевами (обработкапочвы, подкормки, уничтожение сорной растительности, защита растений от вредителей и болезней); уборкуурожая. Рациональная технология возделывания с.-х. культур должна соответствовать почвенно-климатическим условиям зоны, с.-х. района, хозяйства, севооборотного поля; биологическим особенностямвозделываемой культуры, разновидности, сорта; производственным (хозяйственным) ресурсам колхоза илисовхоза. В исследованиях по Р. используют полевой, вегетационный и лабораторный методы. Основные задачи Р.: разработка и совершенствование технологии возделывания сортов интенсивноготипа (способных наиболее продуктивно использовать плодородие почвы, отзывчивых на высокие дозыудобрений и орошение, устойчивых к полеганию, вредителям и болезням, приспособленных кмеханизированному возделыванию, обладающих высоким качеством продукции); работы по исследованиюустойчивости растений к засухе, низким и высоким температурам, засолению почвы; разработка и внедрениеинтегрированных систем защиты растений от болезней и вредителей; создание наиболее эффективных формудобрений; мелиорация земель; дальнейшее изучение физиолого-биохимических и генетических основиммунитета; совершенствование методов программирования высоких урожаев; разработкавысокомеханизированных способов возделывания с.-х. культур.
Почва — источник всех питательных веществ, поступающих в растения через корневую систему. К необходимым для растений элементам питания относятся: азот, фосфор, калий, кальций, магний, сера, железо. Важную роль в жизни растений играют микроэлементы бор, марганец, цинк, кобальт, молибден, внесение которых в почву (при их недостатке) может повысить урожай и его качество. Рассмотрим запасы важнейших питательных веществ почвы и источники их пополнения. Азот. Источником его в почве служит прежде всего органическое вещество, в котором заключено 90% азота почвы. Содержание этого элемента в гумусе различных почв измеряется несколькими тоннами на гектар. Запасы гумуса без поступления органических веществ ежегодно уменьшаются в подзолистых почвах на 6—7 ц, в чернозёмах около 1 т с 1 га. Поэтому система удобрения почвы и севооборота должна строиться таким образом, чтобы запасы гумуса в почве не истощались. Наибольшее значение для пополнения доступного растениям почвенного азота имеют процессы аммонификации, при которой азот органического вещества превращается в аммиак, - и нитрификации, при которой аммиак переходит в азотистую, а затем в азотную кислоту и ее соли. Развитию этих процессов способствуют оптимальная температура (20—30° С) и влажность почвы (60—70% полной влагоемкости), аэрация почвы, благоприятная реакция среды. Превращение органических соединений в доступные минеральные формы азота проходит несколько последовательных стадий. Белки и гумусовые вещества под действием ферментов превращаются сначала в аминокислоты и амиды. Микроорганизмы-ам-монификаторы переводят эти соединения в аммиак, аммиачные соли и поглощенный аммоний, уже доступные растениям. Однако в дальнейшем аммиак под влиянием нитрифицирующих бактерий превращается в нитриты, а затем в нитраты, связанные с кальцием, магнием, калием и другими катионами. При благоприятных условиях нитрификации, например в паровом поле на черноземах, может накапливаться от 30 до 50 мг и более нитратного азота на 1 кг почвы, что соответствует 90— 150 кг на 1 гаи больше. В паровом поле на дерново-подзолистых почвах также может аккумулироваться азот нитратов, хотя и в меньшем количестве.
Накопленный в почве азот нитратов легкоподвижен. При выпадении большого количества осадков он может опускаться в глубокие горизонты и даже вымываться в грунтовые воды, а также переходить в элементарный азот и улетучиваться в воздух. В засушливых условиях, например в Западной Сибири, нитраты долго (несколько лет) сохраняются в почве. Поэтому процесс разложения органического вещества и образования подвижных форм азота можно регулировать в интересах лучшей обеспеченности этим элементом растений. Другим источником азота в почве служит азот воздуха. Его запасы действительно неисчерпаемы. Однако пути поступления азота воздуха в почву ограничены. Небольшое количество этого элемента (около 4 кг на 1 га) попадает ежегодно с осадками. Накапливают азот в почве и свободноживущие азотфиксаторы (бактерии, некоторые грибы и водоросли). Однако даже при неблагоприятных условиях они могут дать его немного (5—10 кг на 1 га в год). Количество азота в почве необходимо пополнять внесением органических и минеральных (азотных) удобрений, а также мобилизацией атмосферного азота путем посева бобовых растений, главным образом многолетних (клевера, люцерны), или таких однолетних бобовых, которые запахиваются в почву (люпин). Известно, что клевер и люцерна усваивают 150—200 кг азота на 1 га. Примерно одна треть его остается в почве, а остальное количество возвращается в нее в виде навоза. Степень обеспеченности растений азотом почвы нельзя определить по валовому содержанию гумуса или азота. Приближенно содержание этого элемента в доступной форме устанавливают химическими методами, в частности методом Тюрина — Кононовой, которым определяется в почве содержание легкогидролизуемого азота, включающего азот нитратов, аммиака и часть азота органических соединений, легко превращающегося в доступную для растений форму. Для определения обеспеченности почвы азотом этим методом используют шкалу, в которой указано количество гидролизуемого азота в миллиграммах на 100 г почвы. Степень обеспеченности для разных групп культур неодинаковая. Принято считать содержание азота (в мг на 100 г почвы) до 4—6 низким, 6—8 средним, свыше 8 высоким. Однако метод Тюрина—Кононовой пригоден не для всех почв и зон. Потребность в азоте устанавливают по содержанию нитратов в почве осенью и весной, (этот метод подходит для засушливых районов, где не наблюдается сильного вымывания нитратов в глубь почвы, например в Западной Сибири и Северном Казахстане), а также определением нитрификационной способности почв. Наиболее точно о возможной реакции на внесение азотных удобрений на той или иной почве можно судить только на основании полевых опытов. Фосфор. Хотя содержание его в земной коре не превышает 0,1%, значение этого элемента в жизни почвы и растений огромно. Растения аккумулируют фосфор в перегнойном слое почвы, но в то же время и отчуждают с урожаями, особенно с товарной частью его. Фосфор находится в почвах в органических и минеральных соединениях. В черноземах примерно половина, а в дерново-подзолистых почвах одна треть его связана с органическим веществом.
Этот фосфор становится доступным растениям лишь после минерализации органического вещества. Минеральные соединения фосфора представлены очень многими формами, преимущественно труднорастворимыми и слабодоступными растениям фосфатами алюминия, железа и трехкальциевыми фосфатами Са3(РО4)2. Легкодоступных соединений фосфора, таких, как растворимые соли кальция [Ca(H2PO4)2]], магния [Mg(H2P04)2], калия (КН2PO4), аммония [(NH4)2HP04 и NH4H2P04] в почве мало. Наблюдается большой разрыв между валовым содержанием фосфора в почве и его количеством, доступным для растений. Например, в дерново-подзолистых суглинистых почвах или в серых лесных общее содержание фосфора (P20s) в пахотном слое составляет 0,04—0,12%, или 1,2—3,6 т на 1 га, а количество доступных растениям форм фосфора в неудобренной фосфатами почве не превышает 0,1—0,2 т на 1 га. О потребности почв в фосфорных удобрениях судят по содержанию доступного растениям фосфора, определяемого теми или другими химическими методами. Все методы рассчитаны на вытеснение фосфора растворителями различной силы и концентрации. Разумеется, химические методы только приближенно дают представление о доступности фосфора растениям. В СССР для определения нуждаемости почв в фосфорных удобрениях применяют метод Кирсанова, основанный на вытеснении фосфора 0,2 н. соляной кислотой (для подзолистых почв), метод Мачигина, основанный на вытеснении фосфора 1%-ным раствором углекислого аммония (для карбонатных почв) и некоторые другие. Используют также методы, в которых применяют последовательно несколько растворителей, что позволяет определить групповой состав фосфатов в почве по степени их растворимости (методы Чирикова, Чанга и Джексона и др.). При установлении обеспеченности почв доступным для растений фосфором пользуются следующей шкалой С учетом обеспеченности почв подвижным фосфором и устанавливают дозы фосфорных удобрений. Калий. Все почвы, за исключением торфяных и рыхлопесчаных, характеризуются высоким валовым содержанием калия (КО) — 1,2—2,5%, или 35—75 т на 1 га пахотного слоя. Преобладающая часть калия связана с глинистыми частицами почвы. Поэтому существует прямая связь между механическим составом почв и содержанием в них калия. Чем больше в почве мелкодисперсных частиц, тем больше в ней калия. В пределах одного почвенного типа в зависимости от механического состава почвы количество калия изменяется следующим образом: песчаные и супесчаные почвы — 1,2%'. легкосуглинистые — 1,77; среднесуглинистые — 2,17; тяжелосуглинистые и глинистые—2,33%. Калий находится в почвах преимущественно в форме недоступных или малодоступных растениям минералов, таких, как ортоклаз, мусковит, биотит, нефелин. Из минералов, особенно трех последних, он может постепенно, но очень медленно переходить в растворимое состояние под влиянием химического и биологического выветривания, например под влиянием выделяемой корнями растений углекислоты. Если при низких урожаях процесс высвобождения калия из труднодоступных минеральных соединений может обеспечить потребность растений, то при высоких урожаях и большом выносе этого элемента из почвы доступного калия в ней казывается недостаточно для питания растений. Основной формой доступного растениям калия в почве служит обменный калий, адсорбированный на поверхности почвенных коллоидов. Содержание его в дерново-подзолистых почвах колеблется от 4 до 25 мг К20 на 100 г почвы, в черноземах и сероземах—до 50 мг. В почве происходит и обратный процесс—фиксация, или закрепление, калия. Из обменной формы он может переходить в необменную. Фиксации подвержен и калий вносимых удобрений. Для определения доступного калия принят также метод Кирсанова (фосфор и калий определяют в одной вытяжке 0,2 н. НС1). Применяется обычно следующая шкала обеспеченности почв доступным (обменным) калием. Однако содержание в почве обменного калия не служит достаточным показателем обеспеченности растений доступным калием, так как, помимо обменного калия, растения используют часть необменного калия. Кроме того, количество обменного калия в почве по мере его расходования может восстанавливаться за счет необменного калия. Магний. Некоторые почвы особенно дерново-подзолистые, песчаные и супесчаные, содержат мало магния. Если общее количество его в суглинистых почвах 1—2%, то в песчаных всего 0,05— 0,1% MgO. Основная часть магния, находящегося в почвах, входит в силикаты и трудно доступна растениям. Водорастворимый и обменный магний составляет не более 10% общего его запаса, а в легких почвах — 0,5—2,5 мг на 100 г почвы. Между тем магний вымывается из почвы осадками, используется растениями (зерно< вые выносят 10—15 кг Mg0 на 1 га, а картофель, клевер, сахарная свекла—в 3—5 раз больше). Особенно энергично магний вытесняется из почвы при внесении аммиачных удобрений, в результате чего становится совершенно необходимым пополнение запасов этого элемента применением удобрений. По содержанию обменного магния можно судить о степени обеспеченности магнием, о нуждаемости почв в магниевом удобрении Сера. В дерново-подзолистых почвах серы около 0,01—0.1%, в черноземах 0,2—0,5, в каштановых 0,2—0,5%. Значительная часть серы входит в состав органического вещества. Она поглощается растениями, а' также вымывается из почвы. Вынос серы с 1 га составляет 15—25 кг. Если запасы ее не восполняются внесением органических и некоторых серосодержащих минеральных удобрений, то начинает проявляться недостаток серы, особенно на легких почвах. ' Микроэлементы. Недостаток их в почве сказывается на состоянии и развитии растений, на урожайности, а также на здоровье и продуктивности животных, если они не получают нужных микроэлементов в кормах, в частности на пастбищах.
|
|||||||||
Последнее изменение этой страницы: 2016-08-01; просмотров: 783; Нарушение авторского права страницы; Мы поможем в написании вашей работы! infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 18.188.131.127 (0.014 с.) |