ТОП 10:

За счёт явления самоиндукции, в электрической цепи с источником ЭДС при замыкании цепи ток устанавливается не мгновенно, а через какое-то время.



Собственный магнитный поток Φ, пронизывающий контур или катушку с током, пропорционален силе тока I:

 
Φ = LI.
 

Коэффициент пропорциональности L в этой формуле называется коэффициентом самоиндукции или индуктивностью катушки

Индуктивность соленоида в вакууме L=Ф/I

Природа магнетизма атома. Магнитный момент атома и его механический момент. Гиромагнитное отношение. Момент сил, действующий на атом в магнитном поле.

Полный магнитный момент атома складывается из нескольких составляющих: магнитный момент электронов, связанный с их орбитальным движением, собственный магнитный момент электронов (спин), магнитный момент атомного ядра. Последний по величине существенно меньше магнитного момента электронной оболочки и учитывается лишь в специальных случаях. Магнитный момент электронной оболочки и связанные с ним свойства атомов зависят от момента каждого отдельного электрона и порядка их сложения.

 

Спин.Любое вращающееся тело обладает моментом импульса относительно своего центра масс; это собственный момент тела, или спин. Спиновый момент, или просто, спин атома или атомного ядра является характеристикой, аналогичной моменту импульса вращающегося волчка или гироскопа. Момент импульса твердого тела, вращающегося вокруг оси, определяется как сумма моментов импульсов всех частиц этого тела относительно той же оси; этот момент равен сумме произведений массы частицы на ее скорость и на кратчайшее расстояние частицы до оси вращения. Вектор момента импульса параллелен оси вращения и направлен в сторону перемещения винта с правой резьбой при таком же вращении. Спин атомов и ядер измеряется в единицах h/2p, где h – постоянная Планка, равная 6,6261×10–34 Дж×с. Экспериментально установлено, что в этих единицах (в соответствии с правилами квантовой механики) наблюдаемые проекции всех спинов на заданное направление принимают либо целое, либо полуцелое значение, т.е. либо 1, 2, 3, ..., либо 1/2, 3/2, 5/2, ... . Максимальное значение проекции совпадает с величиной спина; например, если спин ядра j равен 5/2, то измеренное максимальное значение проекции спина составит 5/2 в единицах h/2p Дж×с.

Магнитный дипольный момент.Магнитный дипольный момент атома или ядра аналогичен характеристике стрелки компаса. Он представляет собой вращающий момент, действующий на атом или ядро в магнитном поле.Дипольный момент – векторная величина. Магнитный момент атома обычно измеряют в единицах магнетона Бора, m0 = еh/4pmc = 9,27×10–24 Дж/Тл, где е – заряд электрона, h – постоянная Планка, m – масса электрона и c – скорость света. Магнитные же моменты ядер обычно измеряют в единицах ядерного магнетона mN, который равен магнетону Бора, деленному на отношение масс протона и электрона, а именно mN = 5,051×10–27 Дж/Тл.

Механический и магнитный моменты атома, находящегося в основном, невозбужденном состоянии, равны нулю.

Величины собственных механического и магнитного моментов электрона определяются формулами

,

 

 

.

Для таких моментов гиромагнитное отношение

 

Магнитное поле в веществе. Вектор намагниченности, вектор напряженности, связь между ними. Теорема о циркуляции вектора напряженности магнитного поля. Классификация магнетиков. Диа-, пара- и ферромагнетики.

Физическая величина, показывающая, во сколько раз индукция магнитного поля в однородной среде отличается по модулю от индукции магнитного поля в вакууме, называется магнитной проницаемостью:

Магнитные свойства веществ определяются магнитными свойствами атомов или элементарных частиц (электронов, протонов и нейтронов), входящих в состав атомов. В настоящее время установлено, что магнитные свойства протонов и нейтронов почти в 1000 раз слабее магнитных свойств электронов. Поэтому магнитные свойства веществ в основном определяются электронами, входящими в состав атомов.

Одним из важнейших свойств электрона является наличие у него не только электрического, но и собственного магнитного поля. Собственное магнитное поле электрона называют спиновым (spin – вращение). Электрон создает магнитное поле также и за счет орбитального движения вокруг ядра, которое можно уподобить круговому микротоку. Спиновые поля электронов и магнитные поля, обусловленные их орбитальными движениями, и определяют широкий спектр магнитных свойств веществ.

Вещества крайне разнообразны по своим магнитным свойствам. У большинства веществ эти свойства выражены слабо. Слабо-магнитные вещества делятся на две большие группы – парамагнетикиидиамагнетики. Они отличаются тем, что при внесении во внешнее магнитное поле парамагнитные образцы намагничиваются так, что их собственное магнитное поле оказывается направленным по внешнему полю, а диамагнитные образцы намагничиваются против внешнего поля. Поэтому у парамагнетиков μ > 1, а у диамагнетиков μ < 1. Отличие μ от единицы у пара- и диамагнетиков чрезвычайно мало. Например, у алюминия, который относится к парамагнетикам, μ – 1 ≈ 2,1·10–5, у хлористого железа (FeCl3) μ – 1 ≈ 2,5·10–3. К парамагнетикам относятся также платина, воздух и многие другие вещества. К диамагнетикам относятся медь (μ – 1 ≈ –3·10–6), вода (μ – 1 ≈ –9·10–6), висмут (μ – 1 ≈ –1,7·10–3) и другие вещества. Образцы из пара- и диамагнетика, помещенные в неоднородное магнитное поле между полюсами электромагнита, ведут себя по-разному – парамагнетики втягиваются в область сильного поля, диамагнетики – выталкиваются (рис. 1.19.1).

Рисунок 1.19.1. Парамагнетик (1) и диамагнетик (2) в неоднородном магнитном поле.

Пара- и диамагнетизм объясняется поведением электронных орбит во внешнем магнитном поле. У атомов диамагнитных веществ в отсутствие внешнего поля собственные магнитные поля электронов и поля, создаваемые их орбитальным движением, полностью скомпенсированы. Возникновение диамагнетизма связано с действием силы Лоренца на электронные орбиты. Под действием этой силы изменяется характер орбитального движения электронов и нарушается компенсация магнитных полей. Возникающее при этом собственное магнитное поле атома оказывается направленным против индукции внешнего поля.

В атомах парамагнитных веществ магнитные поля электронов скомпенсированы не полностью, и атом оказывается подобным маленькому круговому току. В отсутствие внешнего поля эти круговые микротоки ориентированы произвольно, так что суммарная магнитная индукция равна нулю. Внешнее магнитное поле оказывает ориентирующее действие – микротоки стремятся сориентироваться так, чтобы их собственные магнитные поля оказались направленными по индукции внешнего поля. Из-за теплового движения атомов ориентация микротоков никогда не бывает полной. При усилении внешнего поля ориентационный эффект возрастает, так что индукция собственного магнитного поля парамагнитного образца растет прямо пропорционально индукции внешнего магнитного поля. Полная индукция магнитного поля в образце складывается из индукции внешнего магнитного поля и индукции собственного магнитного поля, возникшего в процессе намагничивания. Механизм намагничивания парамагнетиков очень похож на механизм поляризации полярных диэлектриков. Диамагнетизм не имеет аналога среди электрических свойств вещества.

Вещества, способные сильно намагничиваться в магнитном поле, называются ферромагнетиками. Магнитная проницаемость ферромагнетиков по порядку величины лежит в пределах 102–105. Например, у стали μ ≈ 8000, у сплава железа с никелем магнитная проницаемость достигает значений 250000.

К группе ферромагнетиков относятся четыре химических элемента: железо, никель, кобальт, гадолиний. Из них наибольшей магнитной проницаемостью обладает железо. Поэтому вся эта группа получила название ферромагнетиков.

Ферромагнетиками могут быть различные сплавы, содержащие ферромагнитные элементы. Широкое применение в технике получили керамические ферромагнитные материалы – ферриты.

Для каждого ферромагнетика существует определенная температура (так называемая температура или точка Кюри), выше которой ферромагнитные свойства исчезают, и вещество становится парамагнетиком. У железа, например, температура Кюри равна 770 °C, у кобальта 1130 °C, у никеля 360 °C.

Магнитная проницаемость μ ферромагнетиков не является постоянной величиной; она сильно зависит от индукции B0 внешнего поля. Типичная зависимость μ (B0) приведена на рис. 1.19.2. В таблицах обычно приводятся значения максимальной магнитной проницаемости.

Рисунок 1.19.2. Типичная зависимость магнитной проницаемости ферромагнетика от индукции внешнего магнитного поля.

Непостоянство магнитной проницаемости приводит к сложной нелинейной зависимости индукции B магнитного поля в ферромагнетике от индукции B0 внешнего магнитного поля. Характерной особенностью процесса намагничивания ферромагнетиков является так называетмый гистерезис, то есть зависимость намагничивания от предыстории образца. Кривая намагничивания B (B0) ферромагнитного образца представляет собой петлю сложной формы, которая называется петлей гистерезиса (рис. 1.19.3.).

Рисунок 1.19.3. Петля гистерезиса ферромагнетика. Стрелками указано направление процессов намагничивания и размагничивания ферромагнитного образца при изменении индукции B0 внешнего магнитного поля.

Из рис. 1.19.3 видно, что при наступает магнитное насыщение – намагниченность образца достигает максимального значения.

Если теперь уменьшать магнитную индукцию B0 внешнего поля и довести ее вновь до нулевого значения, то ферромагнетик сохранит остаточную намагниченность – поле внутри образца будет равно Br. Остаточная намагниченность образцов позволяет создавать постоянные магниты. Для того, чтобы полностью размагнитить образец, необходимо, изменив знак внешнего поля, довести магнитную индукцию B0 до значения –B0c, которое принято называть коэрцитивной силой. Далее процесс перемагничивания может быть продолжен, как это указано стрелками на рис. 1.19.3.

У магнито-мягких материалов значения коэрцитивной силы B0c невелико – петля гистерезиса таких материалов достаточно «узкая». Материалы с большим значением коэрцитивной силы, то есть имеющие «широкую» петлю гистерезиса, относятся к магнито-жестким.







Последнее изменение этой страницы: 2016-08-01; Нарушение авторского права страницы

infopedia.su Все материалы представленные на сайте исключительно с целью ознакомления читателями и не преследуют коммерческих целей или нарушение авторских прав. Обратная связь - 34.200.222.93 (0.007 с.)